DOI QR코드

DOI QR Code

밀도성층을 통과하는 수면파 및 내부파의 전파특성

Characteristics of Surface and Internal Wave Propagation through Density Stratification

  • 이우동 (국립경상대학교 해양산업연구소) ;
  • 허동수 (국립경상대학교 해양토목공학과)
  • 투고 : 2016.04.14
  • 심사 : 2016.08.26
  • 발행 : 2016.10.01

초록

아직까지 밀도성층을 통과하는 파랑변형에 관한 동수학적 특성에 대해서 명확히 밝혀진 부분은 그다지 많지 않다. 따라서 본 연구에서는 2층 밀도성층을 통과하는 파랑의 수리특성을 수치적으로 해석하기 위하여 온도와 염분에 따른 밀도류를 해석할 수 있게 개량된 3차원 수치파동수조(LES-WASS-3D ver. 2.0)를 이용하여 수치시뮬레이션을 수행하였다. 그리고 이용하는 수치파동수조의 타당성 및 유효성을 확인하기 위하여 Stokes 3차 파랑이론에 근거한 내부파형을 비교 검토하였다. 수치시뮬레이션 결과로부터 밀도성층을 통과하는 수면파 및 내부파의 파고가 감소하는 현상을 알 수 있었으며, 이것은 상 하층의 밀도차이에 기인한 전파속도 차이로 인하여 계면에서 강한 와도가 발생하기 때문으로 확인되었다. 또한 밀도성층의 밀도차이가 증가할수록, 상 하층의 수심비가 증가할수록(상층의 수심이 깊어질수록) 와도가 강하게 발생하여 수면파 및 내부파의 파고감쇠를 심화시키는 것을 확인할 수 있었다.

Hydrodynamic characteristics of wave propagation through density stratification have not been identified in details. So this study conducted a numerical simulation using LES-WASS-3D ver. 2.0 for analysis of density current due to water temperature and salinity in order to analyze hydraulic characteristics under wave action in a two-layer density stratified fluid. For the validity and effectiveness of numerical wave tank used, it was compared and analyzed with the experiment to show waveform based on $3^{rd}$-order Stoke wave theory at the internal of a density stratification. Using the results obtained from numerical simulation, the surface and internal wave heights are reduced as the wave propagates in a two-layer density stratified water. And the surface or internal wave attenuation became more serious as the vorticities were increased by the velocity difference of wave propagation due to the upper-lower density difference around the interface of a density stratification. As well, the surface and internal wave attenuations became more serious with higher density difference and depth ratio between upper and lower layers when the wave propagates through a density stratification.

키워드

참고문헌

  1. Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  2. Brorsen, M. and Larsen, J. (1987). "Source generation of nonlinear gravity waves with boundary integral equation method." Coastal Eng., Vol. 11, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  3. Choi, W. and Camassa, R. (1999). "Fully nonlinear internal waves in a two-fluid system." J. Fluid Mech., Vol. 396, pp. 1-36. https://doi.org/10.1017/S0022112099005820
  4. Constantin, A. and Villari, G. (2008). "Particle trajectories in linear water waves." J. Math. Fluid Mech., Vol. 244, pp. 1888-1909.
  5. Craig, W., Guyenne, P. and Sulem, C. (2011). "Coupling between internal and surface waves." Natural Hazards, Vol. 57, pp. 617-642. https://doi.org/10.1007/s11069-010-9535-4
  6. Dias, F. and Il'ichev, A. (2001). "Interfacial waves with free-surface boundary conditions: an approach via a model equation." Physica D: Nonlinear Phenomena, Vol. 150, pp. 278-300. https://doi.org/10.1016/S0167-2789(01)00149-X
  7. Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. https://doi.org/10.1063/1.857955
  8. Gill, A. E. (1982). "Atmosphere-ocean dynamics." New York, Academic Press.
  9. Grue, J., Jensen, A., Rusas, P. O. and Sveen, J. K. (2000). "Breaking and broadening of internal solitary waves." J. Fluid Mech., Vol. 413, pp. 181-217. https://doi.org/10.1017/S0022112000008648
  10. Hur, D. S. and Lee, W. D. (2012). "Three-dimensional flow characteristics and wave height distribution around permeable submerged breakwaters; part I- without beach." J. Korean Society of Civil Eng., KSCE, Vol. 27, No. 6B, pp. 689-701 (in Korean).
  11. Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  12. Koo, W. C. and Kim, M. G. (2009). "Numerical analysis of internal waves in two-layer fluids by a two-domain boundary element method." J. ocean eng. and tech., KSOE, Vol. 23, No. 4, pp. 6-11 (In Korean).
  13. Kumar, P. S., Oh, Y. M. and Cho, W. C. (2008). "Surface and internal waves scattering by partial barriers in a two-layer fluid." J. Korean Society of Coastal and Ocean Eng., KSCOE, Vol. 20, No. 1, pp. 25-33.
  14. Lai, K. C. (2009). "Experimental study on the interaction between surface wave and internal wave." Master`s thesis, Nat'l Sun Yat-sen Univ., Taiwan, p. 112 (In Chinese).
  15. Lee, W. D. and Hur, D. S. (2014). "Development of 3-d hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." J. Korean Society of Civil Eng., KSCE, Vol. 34, No. 3, pp. 859-871 (in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0859
  16. Lilly, D. K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.
  17. Michallet, H. and Barthelemy, E. (2008). "Experimental study of interfacial solitary waves." J. Fluid Mech., Vol. 366, pp. 159-177.
  18. Nakayama, K. and Imberger, J. (2010) "Residual circulation due to internal waves shoaling on a slope." Limnol. Oceanogr., Vol. 55, No. 3, pp. 1009-1023. https://doi.org/10.4319/lo.2010.55.3.1009
  19. Ohyama, T. and Nadaoka, K. (1991). "Development of a numerical wave tank for analysis of non-linear and irregular wave field." Fluid Dyn. Res., Vol. 8, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  20. Raffel, M., Willert, C. E. and Kompenhans, J. (1998). "Particle image velocimetry: a practical guide." Springer Verlag, Berlin, p. 253.
  21. Raffel, M., Willert, C. E., Wereley, S. T. and Kompenhans, J. (2007). "Particle image velocimetry." Springer Verlag, Berlin, p. 448.
  22. Riley, J. P. and Skirrow, G. (1965). "Chemical oceanography." Vol. 3, Academic Press.
  23. Umeyama, M. (2008a). "Mechanics of internal waves propagating over a varying bottom slope." J. Water Resources and Environmental Eng., No. 23, pp. 1-11.
  24. Umeyama, M. (2008b). "PIV techniques for velocity fields of internal waves over a slowly varying bottom topography." J. Waterway, Port, Coastal, Ocean Eng., Vol. 134, pp. 286-298. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:5(286)
  25. Umeyama, M. and Matsuki, S. (2011). "Measurements of velocity and trajectory of water particle for internal waves in two density layers." Geophysical Research Letters, Vol. 38, L03612, doi:10.1029/2010GL046419.
  26. Umeyama, M. and Shinimiya, H. (2009). "Particle image velocimetry measurements for Stokes progressive internal waves." Geophysical Research Letters, Vol. 36, L06603, doi:10.1029/2008GL036821.