References
- G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960.
- C. Bardaro, On approximation properties for some classes of linear operators of convolution type, Atti Sem. Mat. Fis. Univ. Modena, 33 (2) (1984), 329-356.
- C. Bardaro and G. Vinti, On approximation properties of certain nonconvolution integral operators, J. Approx. Theory, 62 (3) (1990), 358-371. https://doi.org/10.1016/0021-9045(90)90058-X
- C. Bardaro and G. Vinti, Approximation by nonlinear integral operators in some modular function spaces, Ann. Polon. Math., 63 (1996), 173-182. https://doi.org/10.4064/ap-63-2-173-182
- C. Bardaro, J. Musielak and G. Vinti, Nonlinear integral operators and applications: De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, Walter de Gruyter, Publ., Berlin, New York, 2003.
- C. Bardaro and I. Mantellini, Pointwise convergence theorems for nonlinear Mellin convolution operators, Int. J. Pure Appl. Math., 27 (4) (2006), 431-447.
- P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation: Vol. I, Academic Press, New York, London, 1971.
- Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Mathematica Scientia, 33 B(5) (2013), 1305-1313.
- Deepmala, A study on fixed point theorems for nonlinear contractions and its applications, Ph. D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India, 2014.
- S. Esen, Convergence and the order of convergence of family of nonconvolution type integral operators at characteristic points, Ph. D. Thesis, Ankara University, Ankara, Turkey, 2002.
- S. Esen, The order of approximation by the family of integral operators with positive kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 28 (2008), 117-122.
- A. D. Gadjiev, The order of convergence of singular integrals which depend on two parameters, in: Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbaidzan. SSR, (1968), 40-44.
- O. O. Guller, G. Uysal and E. Ibikli, On weighted approximation by singular integral operators depending on two parameters, 4th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA 2015), Athens, Greece, (2015), 89.
- H. Karsli, On approximation properties of non-convolution type nonlinear integral operators, Anal. Theory Appl., 26 (2) (2010), 140-152. https://doi.org/10.1007/s10496-010-0140-x
-
R. G. Mamedov, On the order of convergence of m-singular integrals at generalized Lebesgue points and in the space
$L_p$ (-${{\infty},{\infty}}$ ), Izv. Akad. Nauk SSSR Ser. Mat., 27 (2) (1963), 287-304. - V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (Functions) in Lp(p >= 1)-norm , International Journal of Contemporary Mathematical Sciences, 7(19) (2012), 909-918.
- V. N. Mishra and S. Pandey, On Chlodowsky variant of (p; q) Kantorovich-Stancu-Schurer operators, Int. J. Analysis and Applications, 11 (1) (2016), 28-39.
- L. N. Mishra and M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., 285 (2016), 174-183.
- L. N. Mishra, M. Sen and R. N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, (2016), (in press).
- L. N. Mishra, R. P. Agarwal and M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdelyi-Kober fractional integrals on the unbounded interval, Progress in Fractional Differentiation and Applications, 2 (3) (2016), 153-168. https://doi.org/10.18576/pfda/020301
- J. Musielak, On some approximation problems in modular spaces, in: Constructive Function Theory, Proceedings of International Conference Varna, 1-5 June, 1981, Publication House of Bulgarian Academic of Sciences, Sofia, (1983), 181-189.
- J. Musielak, Approximation by nonlinear singular integral operators in generalized Orlicz spaces, Comment. Math. Prace Mat., 31 (1991), 79-88.
- T. Swiderski and E. Wachnicki, Nonlinear singular integrals depending on two parameters, Comment. Math., 40 (2000), 181-189.
- H. K. Pathak and Deepmala, Common fixed point theorems for PD-operator pairs under relaxed conditions with applications, J. Comp. Appl. Math., 239 (2013), 103-113. https://doi.org/10.1016/j.cam.2012.09.008
- W. Rudin, Real and Complex Analysis, Mc-Graw Hill Book Co., London, 1987.
- B. Rydzewska, Approximation des fonctions par des integrales singulieres ordinaires, Fasc. Math., 7 (1973), 71-81.
- R. Taberski, Singular integrals depending on two parameters, Prace Mat., 7 (1962), 173-179.
- G. Uysal and E. Ibikli, A note on nonlinear singular integral operators depending on two parameters, New Trends Math. Sci. 4 (1) (2016), 104-114. https://doi.org/10.20852/ntmsci.2016115616
Cited by
- ON SINGULAR INTEGRAL OPERATORS INVOLVING POWER NONLINEARITY vol.25, pp.4, 2016, https://doi.org/10.11568/kjm.2017.25.4.483
- On the $$q$$ q -Derivatives of a Certain Linear Positive Operators vol.42, pp.3, 2016, https://doi.org/10.1007/s40995-017-0227-8