DOI QR코드

DOI QR Code

A GENERIC RESEARCH ON NONLINEAR NON-CONVOLUTION TYPE SINGULAR INTEGRAL OPERATORS

  • Received : 2016.07.25
  • Accepted : 2016.09.11
  • Published : 2016.09.30

Abstract

In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: $$T_{\lambda}(f;x)={\large\int_{\Omega}}K_{\lambda}(t,x,f(t))dt,\;x{\in}{\Psi},\;{\lambda}{\in}{\Lambda}$$, where ${\Psi}$ = and ${\Omega}$ = stand for arbitrary closed, semi-closed or open bounded intervals in ${\mathbb{R}}$ or these set notations denote $\mathbb{R}$, and ${\Lambda}$ is a set of non-negative numbers, to the function $f{\in}L_{p,{\omega}}({\Omega})$, where $L_{p,{\omega}}({\Omega})$ denotes the space of all measurable functions f for which $\|{\frac{f}{\omega}}\|^p$ (1 ${\leq}$ p < ${\infty}$) is integrable on ${\Omega}$, and ${\omega}:{\mathbb{R}}{\rightarrow}\mathbb{R}^+$ is a weight function satisfying some conditions.

Keywords

References

  1. G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960.
  2. C. Bardaro, On approximation properties for some classes of linear operators of convolution type, Atti Sem. Mat. Fis. Univ. Modena, 33 (2) (1984), 329-356.
  3. C. Bardaro and G. Vinti, On approximation properties of certain nonconvolution integral operators, J. Approx. Theory, 62 (3) (1990), 358-371. https://doi.org/10.1016/0021-9045(90)90058-X
  4. C. Bardaro and G. Vinti, Approximation by nonlinear integral operators in some modular function spaces, Ann. Polon. Math., 63 (1996), 173-182. https://doi.org/10.4064/ap-63-2-173-182
  5. C. Bardaro, J. Musielak and G. Vinti, Nonlinear integral operators and applications: De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, Walter de Gruyter, Publ., Berlin, New York, 2003.
  6. C. Bardaro and I. Mantellini, Pointwise convergence theorems for nonlinear Mellin convolution operators, Int. J. Pure Appl. Math., 27 (4) (2006), 431-447.
  7. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation: Vol. I, Academic Press, New York, London, 1971.
  8. Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Mathematica Scientia, 33 B(5) (2013), 1305-1313.
  9. Deepmala, A study on fixed point theorems for nonlinear contractions and its applications, Ph. D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India, 2014.
  10. S. Esen, Convergence and the order of convergence of family of nonconvolution type integral operators at characteristic points, Ph. D. Thesis, Ankara University, Ankara, Turkey, 2002.
  11. S. Esen, The order of approximation by the family of integral operators with positive kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 28 (2008), 117-122.
  12. A. D. Gadjiev, The order of convergence of singular integrals which depend on two parameters, in: Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbaidzan. SSR, (1968), 40-44.
  13. O. O. Guller, G. Uysal and E. Ibikli, On weighted approximation by singular integral operators depending on two parameters, 4th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA 2015), Athens, Greece, (2015), 89.
  14. H. Karsli, On approximation properties of non-convolution type nonlinear integral operators, Anal. Theory Appl., 26 (2) (2010), 140-152. https://doi.org/10.1007/s10496-010-0140-x
  15. R. G. Mamedov, On the order of convergence of m-singular integrals at generalized Lebesgue points and in the space $L_p$ (-${{\infty},{\infty}}$), Izv. Akad. Nauk SSSR Ser. Mat., 27 (2) (1963), 287-304.
  16. V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (Functions) in Lp(p >= 1)-norm , International Journal of Contemporary Mathematical Sciences, 7(19) (2012), 909-918.
  17. V. N. Mishra and S. Pandey, On Chlodowsky variant of (p; q) Kantorovich-Stancu-Schurer operators, Int. J. Analysis and Applications, 11 (1) (2016), 28-39.
  18. L. N. Mishra and M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., 285 (2016), 174-183.
  19. L. N. Mishra, M. Sen and R. N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, (2016), (in press).
  20. L. N. Mishra, R. P. Agarwal and M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdelyi-Kober fractional integrals on the unbounded interval, Progress in Fractional Differentiation and Applications, 2 (3) (2016), 153-168. https://doi.org/10.18576/pfda/020301
  21. J. Musielak, On some approximation problems in modular spaces, in: Constructive Function Theory, Proceedings of International Conference Varna, 1-5 June, 1981, Publication House of Bulgarian Academic of Sciences, Sofia, (1983), 181-189.
  22. J. Musielak, Approximation by nonlinear singular integral operators in generalized Orlicz spaces, Comment. Math. Prace Mat., 31 (1991), 79-88.
  23. T. Swiderski and E. Wachnicki, Nonlinear singular integrals depending on two parameters, Comment. Math., 40 (2000), 181-189.
  24. H. K. Pathak and Deepmala, Common fixed point theorems for PD-operator pairs under relaxed conditions with applications, J. Comp. Appl. Math., 239 (2013), 103-113. https://doi.org/10.1016/j.cam.2012.09.008
  25. W. Rudin, Real and Complex Analysis, Mc-Graw Hill Book Co., London, 1987.
  26. B. Rydzewska, Approximation des fonctions par des integrales singulieres ordinaires, Fasc. Math., 7 (1973), 71-81.
  27. R. Taberski, Singular integrals depending on two parameters, Prace Mat., 7 (1962), 173-179.
  28. G. Uysal and E. Ibikli, A note on nonlinear singular integral operators depending on two parameters, New Trends Math. Sci. 4 (1) (2016), 104-114. https://doi.org/10.20852/ntmsci.2016115616

Cited by

  1. ON SINGULAR INTEGRAL OPERATORS INVOLVING POWER NONLINEARITY vol.25, pp.4, 2016, https://doi.org/10.11568/kjm.2017.25.4.483
  2. On the $$q$$ q -Derivatives of a Certain Linear Positive Operators vol.42, pp.3, 2016, https://doi.org/10.1007/s40995-017-0227-8