참고문헌
- N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), no. 3, 405-439. https://doi.org/10.2140/pjm.1956.6.405
- S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifuctions with open fibres, J. Approx. Theory 103 (2000), no. 1, 119-129. https://doi.org/10.1006/jath.1999.3415
- R. Espinola and M. A. Khamsi, Introduction to hyperconvex spaces, In: W. A. Kirk and B. Sims eds., pp. 391-435, Handbook of Metric Fixed Point Theory, Dordrecht:Kluwer Academic Publishers, 2001.
- R. Espinola, W. A. Kirk, and G. Lopez, Nonexpansive retractions in hyperconvex spaces, J. Math. Anal. Appl. 251 (2000), no. 2, 557-570. https://doi.org/10.1006/jmaa.2000.7030
- C. D. Horvath, Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse Math. 2 (1993), no. 2, 253-269. https://doi.org/10.5802/afst.766
- M. A. Khamsi, KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996), no. 1, 298-306. https://doi.org/10.1006/jmaa.1996.0438
- H. Kim, Applications of results on abstract convex spaces to topological ordered spaces, Bull. Korean Math. Soc. 50 (2013), no. 1, 305-320. https://doi.org/10.4134/BKMS.2013.50.1.305
- W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), no. 2, 433-446. https://doi.org/10.1016/j.jmaa.2005.04.053
- W. A. Kirk, S. Reich, and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), no. 7-8, 851-862. https://doi.org/10.1081/NFA-120026380
- W. A. Kirk and S. S. Shin, Fixed point theorems in hyperconvex spaces, Houston J. Math. 23 (1997), no. 1, 175-188.
- D. T. Luc, E. Sarabi, and A. Soubeyran, Existence of solutions in variational relation problems without convexity, J. Math. Anal. Appl. 364 (2010), no. 2, 544-555. https://doi.org/10.1016/j.jmaa.2009.10.040
- J. T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321 (2006), no. 2, 862-866. https://doi.org/10.1016/j.jmaa.2005.08.042
- S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc. 45 (2008), no. 1, 1-27. https://doi.org/10.4134/JKMS.2008.45.1.001
- V. Sankar Raj and S. Somasundaram, KKM-type theorems for best proximity points, Appl. Math. Lett. 25 (2012), no. 3, 496-499. https://doi.org/10.1016/j.aml.2011.09.044
- G. Q. Tian, Generalizations of the FKKM theorem and the Ky Fan minimax inequal- ity, with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl. 170 (1992), no. 2, 457-471. https://doi.org/10.1016/0022-247X(92)90030-H