DOI QR코드

DOI QR Code

GENERALIZED KKM-TYPE THEOREMS FOR BEST PROXIMITY POINTS

  • Kim, Hoonjoo (Department of Mathematics education Sehan University)
  • 투고 : 2015.08.10
  • 발행 : 2016.09.30

초록

This paper is concerned with best proximity points for multimaps in normed spaces and in hyperconvex metric spaces. Using the generalized KKM theorem, we deduce new best proximity pair theorems for a family of multimaps with unionly open fibers in normed spaces. And we prove a new best proximity point theorem for quasi-lower semicontinuous multimaps in hyperconvex metric spaces.

키워드

참고문헌

  1. N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), no. 3, 405-439. https://doi.org/10.2140/pjm.1956.6.405
  2. S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifuctions with open fibres, J. Approx. Theory 103 (2000), no. 1, 119-129. https://doi.org/10.1006/jath.1999.3415
  3. R. Espinola and M. A. Khamsi, Introduction to hyperconvex spaces, In: W. A. Kirk and B. Sims eds., pp. 391-435, Handbook of Metric Fixed Point Theory, Dordrecht:Kluwer Academic Publishers, 2001.
  4. R. Espinola, W. A. Kirk, and G. Lopez, Nonexpansive retractions in hyperconvex spaces, J. Math. Anal. Appl. 251 (2000), no. 2, 557-570. https://doi.org/10.1006/jmaa.2000.7030
  5. C. D. Horvath, Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse Math. 2 (1993), no. 2, 253-269. https://doi.org/10.5802/afst.766
  6. M. A. Khamsi, KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996), no. 1, 298-306. https://doi.org/10.1006/jmaa.1996.0438
  7. H. Kim, Applications of results on abstract convex spaces to topological ordered spaces, Bull. Korean Math. Soc. 50 (2013), no. 1, 305-320. https://doi.org/10.4134/BKMS.2013.50.1.305
  8. W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), no. 2, 433-446. https://doi.org/10.1016/j.jmaa.2005.04.053
  9. W. A. Kirk, S. Reich, and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), no. 7-8, 851-862. https://doi.org/10.1081/NFA-120026380
  10. W. A. Kirk and S. S. Shin, Fixed point theorems in hyperconvex spaces, Houston J. Math. 23 (1997), no. 1, 175-188.
  11. D. T. Luc, E. Sarabi, and A. Soubeyran, Existence of solutions in variational relation problems without convexity, J. Math. Anal. Appl. 364 (2010), no. 2, 544-555. https://doi.org/10.1016/j.jmaa.2009.10.040
  12. J. T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321 (2006), no. 2, 862-866. https://doi.org/10.1016/j.jmaa.2005.08.042
  13. S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc. 45 (2008), no. 1, 1-27. https://doi.org/10.4134/JKMS.2008.45.1.001
  14. V. Sankar Raj and S. Somasundaram, KKM-type theorems for best proximity points, Appl. Math. Lett. 25 (2012), no. 3, 496-499. https://doi.org/10.1016/j.aml.2011.09.044
  15. G. Q. Tian, Generalizations of the FKKM theorem and the Ky Fan minimax inequal- ity, with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl. 170 (1992), no. 2, 457-471. https://doi.org/10.1016/0022-247X(92)90030-H