DOI QR코드

DOI QR Code

THE BERGMAN KERNEL FOR INTERSECTION OF TWO COMPLEX ELLIPSOIDS

  • Beberok, Tomasz (Department of Applied Mathematics University of Agriculture in Krakow)
  • 투고 : 2015.06.25
  • 발행 : 2016.09.30

초록

In this paper we obtain the closed forms of some hypergeometric functions. As an application, we obtain the explicit forms of the Bergman kernel functions for intersection of two complex ellipsoids {$z{\in}\mathbb{C}^3:{\mid}z_1{\mid}^p+{\mid}z_2{\mid}^q$ < 1, ${\mid}z_1{\mid}^p+{\mid}z_3{\mid}^r$ < 1}. We consider cases p = 6, q = r = 2 and p = q = r = 2. We also investigate the Lu Qi-Keng problem for p = q = r = 2.

키워드

참고문헌

  1. S. Bergman, Zur Theorie von pseudokonformen Abbildungen, Mat. Sb. (N.S.) 1(43) (1936), no. 1, 79-96.
  2. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
  3. H. P. Boas, The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2021-2027. https://doi.org/10.1090/S0002-9939-96-03259-5
  4. H. P. Boas, S. Fu, and E. J. Straube, The Bergman kernel function: explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), no. 3, 805-811. https://doi.org/10.1090/S0002-9939-99-04570-0
  5. J. Choi, A. Hasanov, and M. Turaev, Decomposition formulas and integral representations for some Exton hypergeometric functions, J. Chungcheong Math. Soc. 24 (2011), no. 4, 745-758.
  6. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill, New York, 1953.
  7. F. I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.
  8. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Var. Elliptic Equ. 52 (2007), no. 8, 673-683. https://doi.org/10.1080/17476930701300375
  9. A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation, Int. J. Appl. Math. Stat. 8 (2007), no. 7, 30-44.
  10. M. Jarnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, European Math. Soc., Zurich, 2008.
  11. G. Lohofer, Theory of an electromagnetically levitated metal sphere. I. Absorbed power, SIAM J. Appl. Math. 49 (1989), no. 2, 567-581. https://doi.org/10.1137/0149032
  12. Q.-K. Lu, On Kahler manifolds with constant curvature, Chinese Math.-Acta 8 (1966), 283-298.
  13. A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer-Verlag, Berlin, Heidelberg and New York, 1973.
  14. A.W. Niukkanen, Generalised hypergeometric series $^{N}F(x_{1},....,x_{N})$ arising in physical and quantum chemical applications, J. Phys. A 16 (1983), no. 9, 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
  15. N. Nikolov and W. Zwonek, The Bergman kernel of the symmetrized polydisc in higher dimensions has zeros, Arch. Math. (Basel) 87 (2006), no. 5, 412-416. https://doi.org/10.1007/s00013-006-1801-z
  16. K. Oeljeklaus, P. Pflug, and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 3, 915-928. https://doi.org/10.5802/aif.1585
  17. S. B. Opps, N. Saad, and H. M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function $F_2$, J. Math. Anal. Appl. 302 (2005), no. 1, 180-195. https://doi.org/10.1016/j.jmaa.2004.07.052
  18. J.-D. Park, New formulas of the Bergman kernels for complex ellipsoids in $C^2$, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4211-4221. https://doi.org/10.1090/S0002-9939-08-09576-2
  19. J.-D. Park, Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids, J. Math. Anal. Appl. 400 (2013), no. 2, 664-674. https://doi.org/10.1016/j.jmaa.2012.11.017
  20. M. Skwarczynski, The distance in theory of pseu-conformal transformations and the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 22 (1969), 305-310.
  21. I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry, Third ed., Longman, London, New York, 1980.
  22. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1985.
  23. L. Zhang and W. Yin, Lu Qi-Keng's problem on some complex ellipsoids, J. Math. Anal. Appl. 357 (2009), no. 2, 364-370. https://doi.org/10.1016/j.jmaa.2009.04.018