참고문헌
- S. Bergman, Zur Theorie von pseudokonformen Abbildungen, Mat. Sb. (N.S.) 1(43) (1936), no. 1, 79-96.
- L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
- H. P. Boas, The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2021-2027. https://doi.org/10.1090/S0002-9939-96-03259-5
- H. P. Boas, S. Fu, and E. J. Straube, The Bergman kernel function: explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), no. 3, 805-811. https://doi.org/10.1090/S0002-9939-99-04570-0
- J. Choi, A. Hasanov, and M. Turaev, Decomposition formulas and integral representations for some Exton hypergeometric functions, J. Chungcheong Math. Soc. 24 (2011), no. 4, 745-758.
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill, New York, 1953.
- F. I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.
- A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Var. Elliptic Equ. 52 (2007), no. 8, 673-683. https://doi.org/10.1080/17476930701300375
- A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation, Int. J. Appl. Math. Stat. 8 (2007), no. 7, 30-44.
- M. Jarnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, European Math. Soc., Zurich, 2008.
- G. Lohofer, Theory of an electromagnetically levitated metal sphere. I. Absorbed power, SIAM J. Appl. Math. 49 (1989), no. 2, 567-581. https://doi.org/10.1137/0149032
- Q.-K. Lu, On Kahler manifolds with constant curvature, Chinese Math.-Acta 8 (1966), 283-298.
- A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer-Verlag, Berlin, Heidelberg and New York, 1973.
-
A.W. Niukkanen, Generalised hypergeometric series
$^{N}F(x_{1},....,x_{N})$ arising in physical and quantum chemical applications, J. Phys. A 16 (1983), no. 9, 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007 - N. Nikolov and W. Zwonek, The Bergman kernel of the symmetrized polydisc in higher dimensions has zeros, Arch. Math. (Basel) 87 (2006), no. 5, 412-416. https://doi.org/10.1007/s00013-006-1801-z
- K. Oeljeklaus, P. Pflug, and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 3, 915-928. https://doi.org/10.5802/aif.1585
-
S. B. Opps, N. Saad, and H. M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function
$F_2$ , J. Math. Anal. Appl. 302 (2005), no. 1, 180-195. https://doi.org/10.1016/j.jmaa.2004.07.052 -
J.-D. Park, New formulas of the Bergman kernels for complex ellipsoids in
$C^2$ , Proc. Amer. Math. Soc. 136 (2008), no. 12, 4211-4221. https://doi.org/10.1090/S0002-9939-08-09576-2 - J.-D. Park, Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids, J. Math. Anal. Appl. 400 (2013), no. 2, 664-674. https://doi.org/10.1016/j.jmaa.2012.11.017
- M. Skwarczynski, The distance in theory of pseu-conformal transformations and the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 22 (1969), 305-310.
- I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry, Third ed., Longman, London, New York, 1980.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1985.
- L. Zhang and W. Yin, Lu Qi-Keng's problem on some complex ellipsoids, J. Math. Anal. Appl. 357 (2009), no. 2, 364-370. https://doi.org/10.1016/j.jmaa.2009.04.018