DOI QR코드

DOI QR Code

Accuracy Evaluation of UHF Wind Profiler Radar Wind Vectors by Setting a Threshold of Signal-to-Noise Ratios

신호대잡음비의 임계값 설정에 따른 UHF 윈드프로파일러 바람벡터의 정확도 평가

  • Kim, Kwang-Ho (Geo-Sciences Institute, Pukyong National University) ;
  • Kim, Park-Sa (Geo-Sciences Institute, Pukyong National University) ;
  • Kim, Min-Seong (Geo-Sciences Institute, Pukyong National University) ;
  • Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University) ;
  • Kwon, Byung Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 김광호 (부경대학교 지구과학연구소) ;
  • 김박사 (부경대학교 지구과학연구소) ;
  • 김민성 (부경대학교 지구과학연구소) ;
  • 강동환 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과)
  • Received : 2016.06.24
  • Accepted : 2016.09.06
  • Published : 2016.09.30

Abstract

A minimum threshold for the signal to noise ratio ($SNR_{min}$) has to be set in the data processing system of wind profiler radar (WPR). The data collection rate and the accuracy of the WPR wind vector depend on the $SNR_{min}$. The WPR at Uljin is operated with an $SNR_{min}$ of 1 dB which is a relatively large threshold. We found that the accuracy and the continuity of the WPR wind vector with height were directly related to the variability of the SNR and vertical gradient of the squared refractive index. We investigated a quantitative method for determining a new $SNR_{min}$ for the WPR at Uljin and it was evaluated with radiosonde data. The accuracy and continuity of the wind vector from an SNR of less than 1 dB, began to decrease at an altitude of 3.5 km. Most of the SNR values were less than -3.5 dB in altitudes higher than 3.5 km. We retrieved high-accuracy wind vectors at altitudes over 3 km where measurements were deficient with an $SNR_{min}$ of 1 dB.

Keywords

References

  1. Bean, B. R., Dutton, E. J., 1965, Radio Meteorology, U. S. Government Printing Office, Washington, D. C., 431.
  2. Hardy, K. R., Gage, K. S., 1990, The history of radar studies of the clear atmosphere, in D. Atlas (ed.), Radar in Meteorology, American Meteorological Society, Boston, Massachusetts, 130-142.
  3. Hartten, L. M., Johnston, P. E., 2014, Stratocumulus-topped marine boundary layer processes revealed by the absence of profiler reflectivity, J. Appl. Meteorol. Clim., 53, 1775-1789. https://doi.org/10.1175/JAMC-D-12-0308.1
  4. Heo, B. H., Jacoby-Koaly, S., Kim, K. E., Campistron, B., Benech, B., Jung, E. S., 2003, Use of the doppler spectral width to improve the estimation of the convective boundary layer height from UHF wind profiler observations, J. Atmos. Ocean. Tech., 20, 408-424. https://doi.org/10.1175/1520-0426(2003)020<0408:UOTDSW>2.0.CO;2
  5. Holleman, I., Van Gasteren, H., Bouten, W., 2008, Quality assessment of weather radar wind profiles during bird migration, J. Atmos. Ocean. Tech., 25, 2188-2198. https://doi.org/10.1175/2008JTECHA1067.1
  6. Ishihara, M., Kato, Y., Abo, T., Kobayashi, K., Izumikawa, Y., 2006, Characteristics and performance of the operational wind profiler network of the Japan meteorological agency, J. Meteor. Soc. Japan, 84, 1085-1096. https://doi.org/10.2151/jmsj.84.1085
  7. Kim, K. H., Kim, M. S., Seo, S. W., Kim, P. S., Kang, D. H., Kwon, B. H., 2015, Quality evaluation of wind vectors from UHF wind profiler using radiosonde measurements, J. Env. Sci. Int., 24, 133-150. https://doi.org/10.5322/JESI.2015.24.1.133
  8. Kitchen, M., 1989, Representativeness errors for radiosonde observations, Q. J. Roy. Meteor. Soc., 115, 673-700. https://doi.org/10.1002/qj.49711548713
  9. Lindseth, B., Brown, W. O., Jordan, J., Law, D., Hock, T., Cohn, S. A., Popovic, Z., 2012, A new portable 449-MHz spaced antenna wind profiler radar, Geoscience and Remote Sensing, IEEE Transactions on, 50, 3544-3553. https://doi.org/10.1109/TGRS.2012.2184837
  10. Maruri, M., Romo, J. A., Gomez, L., 2014, Aspects of quality control of wind profiler measurements, J. Atmos. Meas. Tech., 7, 135-148. https://doi.org/10.5194/amt-7-135-2014
  11. Monna, W. A., Chadwick, R. B., 1998, Remote -sensing of upper-air winds for weather forecasting: Wind-profiler radar, Bull. WMO, 47, 124-132.
  12. Ottersten, H., 1969, Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT, Radio Science, 4, 1247-1249. https://doi.org/10.1029/RS004i012p01247
  13. Hildebrand, P. H., Sekhon, R. S., 1974, Objective determination of the noise level in doppler spectra, J. Appl. Meteor., 13, 808-811. https://doi.org/10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2
  14. Riddle, A. C., Hartten, L. M., Carter, D. A., Johnston, P. E., Williams, C. R., 2012, A minimum threshold for wind profiler signal-to-noise ratios, J. Atmos. Ocean. Tech., 29, 889-895. https://doi.org/10.1175/JTECH-D-11-00173.1
  15. Robert, E., Barbre, Jr., 2012, Quality control algorithms for the kennedy space center 50-MHz doppler radar wind profiler winds database, J. Atmos. Ocean. Tech., 29, 1731-1743. https://doi.org/10.1175/JTECH-D-11-00205.1
  16. Weber, B. L., Wuertz, D. B., Welsh, D. C., McPeek, R., 1993, Quality controls for profiler measurements of winds and RASS temperatures, J. Atmos. Ocean. Tech., 10, 452-464. https://doi.org/10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2