참고문헌
- Agrawal, R.K., Bawane, N.G., 2015. Multi-objective PSO based adaption of neural network topology for pixel classification in satellite imagery. Appl. Soft Comput. J. 28, 217-225. https://doi.org/10.1016/j.asoc.2014.11.052
- Andrews, P.S., 2006. An investigation into mutation operators for particle swarm optimization. IEEE Congr. Evol. Comput. 1044-1051.
- Angeline, P.J., 1998. Using selection to improve particle swarm optimization. IEEE Int. Conf. Comput. 84-89.
- Cerveira, Frederico, Fonseca, Nuno, Pascoal, Ricardo, 2013. Mooring system influence on the efficiency of wave energy converters. Int. J. Mar. Energy 3-4, 65-81. https://doi.org/10.1016/j.ijome.2013.11.006
- Chan, K., Dillon, T.S., Chang, E., 2013. An intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems. IEEE Trans. Ind. Electron 60, 4714-4725. https://doi.org/10.1109/TIE.2012.2213556
- Chen, P., 2015. Two-level hierarchical approach to unit commitment using expert system and elite PSO. IEEE Trans. Power Syst. 27, 780-789.
- Chen, H.N., Zhu, Y.L., Hu, K.Y., Ku, T., 2008. Global optimization based on hierarchical convolutions model. IEEE Congr. Evol. Comput. 1497-1504.
- Eberhart, R., Kennedy, J., 1995. A New Optimizer Using Particle Swarm Theory. International Symposium on MICRO Machine and Human Science, Nagoya, Japan, pp. 39-43.
- Feng, Z., Allen, R., 2004. Evaluation of the effects of the communication cable on the dynamics of an underwater flight vehicle. Ocean Eng. 31, 1019-1035. https://doi.org/10.1016/j.oceaneng.2003.11.001
- Hu, Fengjun, Wu, Fan, 2010. Diploid hybrid particle swarm optimization with differential evolution for open vehicle routing problem. Eighth World Congr. Automatic Control Artif. Intell. 20, 2692-2697.
- Huston, R.L., Kamman, J.W., 1982. Validation of finite segment cable models. Comput. Struct. 15 (6), 653-660. https://doi.org/10.1016/S0045-7949(82)80006-0
- Jin, N., Rahmat-Samii, Y., 2010. Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics. IEEE Trans. Ant. Prop. 58, 3786-3794. https://doi.org/10.1109/TAP.2010.2078477
- Juang, C.F., 2004. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. B Cybern 34, 997-1006. https://doi.org/10.1109/TSMCB.2003.818557
- Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization, vol. 4. IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942-1948.
- Liang, J.J., Qu, B.Y., Suganthan, P.N., et al., 2012. Dynamic multi-swarm particle swarm optimization for multi-objective optimization problems. IEEE Congr. Evol. Comput. 22 (10), 1-8.
- Sun, Chunya, Song, Baowei, Wang, Peng, 2015. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body. Int. J. Nav. Archit. Ocean Eng. 7, 995-1006. https://doi.org/10.1515/ijnaoe-2015-0069
- Song, Baowei, Zhu, Xinyao, San, Zhixiong, et al., 2012. Hydrodynamic characteristics and stability analysis of UUV (Unmanned Underwater Vehicle) parking on the seabed. J. Northwest. Polytech. Univ. 30 (1), 94-101.
- Song, Bao-wei, Zhang, Bao-shou, Jiang, Jun, et al., 2016. Estimation of equation of motion of four-rotor dish-shaped AUVand simulation research on its hydrodynamic characteristics. Acta Armamentarii 37 (2), 299-306.
- Wang, Li-Zhong, Guo, Zhen, Yuan, Feng, 2010. Three-dimensional interaction between anchor line and seabed. Appl. Ocean Res. 32, 404-413. https://doi.org/10.1016/j.apor.2010.09.001