DOI QR코드

DOI QR Code

The Correlation between Toxin Genotype and Antibiotic Resistance in Methicillin Resistant Staphylococcus aureus Isolated from Clinical Specimen of Intensive Care Unit

중환자실의 임상검체로부터 분리된 Methicillin 내성 Staphylococcus aureus의 독소유전자형과 항생제내성의 상관관계

  • Park, Chul (Department of Clinical Laboratory Science, Gwangyang Health Science University) ;
  • Seong, Chi Nam (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
  • 박철 (광양보건대학교 임상병리과) ;
  • 성치남 (순천대학교 생물학과)
  • Received : 2016.05.09
  • Accepted : 2016.07.03
  • Published : 2016.09.30

Abstract

This study is aimed to determine the correlation between the toxin gene types and antibiotic resistance from MRSA (methicillin-resistant Staphylococcus aureus). Fifty-two strains of MRSA, between January 2014, and December 2014, were isolated from clinical specimens obtained from 2,664 cases in the intensive care unit of a hospital in Suncheon, Jeonnam, Korea. Genes encoding mecA, enterotoxin (SE), toxic shock syndrome toxin-1 (TSST-1), exfoliative toxin (ET), and Panton-Valentine leukocidin (PVL) were detected by multiplex PCR-mediated amplification using specific primers. Toxin genes (seg and sei) were present in 40 strains (76.9%), followed by tst in 34 strains (65.4%). Other genes (eta, etb, sea, sed, see, seh, sej, and pvl) were not detected. Forty strains (76.9%) of MRSA had 2 or more toxin genes simultaneously; 5 coexistent toxin-genes (seb, sec, seg, sei, tst) were the most common in 28 strains (53.8%), and 6 strains (11.5%) had seg and sei genes. The coexistence of genes were 72.5~100%, showing a high correlation among genes (seb, sec, seg, sei and tst). As strains (seb, sec, tst) that had particular toxin genes (seb, sec, seg, sei, tst) in multiple showed 100% resistance to ciprofloxacin, clindamycin, erythromycin, we were able to find that seb, sec, and tst genes have a close relationship to the aforementioned antibiotics. It showed a higher resistance to ciprofloxacin, clindamycin, erythromycin, and tetracycline compared with strains that had toxin genes independent from multiple toxin genes.

본 연구는 methicillin-resistant Staphylococcus aureus(MRSA)로부터, 독소 유전자형과 항생제 내성의 상관 관계를 결정하는 것을 목표로 하였다. 2014년 1월~12월까지 전남 순천의 한 병원 중환자실의 임상검체 2,664건에서 얻어진 MRSA 52균주를 분리하였다. 유전자들이 암호화하고 있는 mecA, 장독소(staphylococcal enterotoxins; sea, seb, sec, seg, seh, sei, sej), 독성 쇼크 증상독소-1 (toxic shock syndrome toxin-1; tst-1), 표피박탈성독소(exfoliative toxin; eta, etb), 백혈구 용해 독소(Panton-Valentine leukocidin; pvl)를 특이적 프라이머를 이용한 multiplex PCR로 증폭 검출 하였다. 독소 유전자 seg와 sei 유전자가 각각 40균주(76.9%)로 가장 많은 보유율을 나타냈으며 다음으로 tst 34균주(65.4%) 순으로 검출 되었으며 eta, etb, sea, sed, see, seh, sej와 pvl 유전자들은 검출 되지 않았다. 2개 이상의 독소 유전자를 동시에 보유한 조합의 MRSA는 40균주(76.9%) 였는데 5개 유전자(seb, sec, seg, sei, tst)를 동시 보유한 조합이 28균주(53.8%)로 가장 많은 분포를 보였으며 다음으로 seg, sei 유전자 동시 보유 조합으로 6균주(11.5%)에서 나타났다. 유전자들 간의 동시 보유율은 72.5~100%로서 특정한 독소 유전자 seb, sec, seg, sei와 tst 유전자간의 상관성이 높게 나타났다. 특정 다수의 독소유전자(seb, sec, seg, sei, tst)를 동시에 보유한 균주들이 개별적 독소 유전자를 보유한 균주(seb, sec, tst)와의 항생제 내성의 상관성은 ciprofloxacin, clindamycin, erythromycin 항생제에 100% 내성을 보임으로서 공통적으로 포함된 seb, sec, tst 유전자와 이 항생제의 내성과는 밀접한 연관이 있음을 알았다.

Keywords

References

  1. Jevons MP. "Celbenin"-resistant staphylococci. Br Med J. 1961;124:124-125.
  2. Burton DC, Edwards JR, Horan TC, Jernigan JA, Fridkin SK. Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in US intensive care units, 1997-2007. JAMA. 2009;301:727-736. https://doi.org/10.1001/jama.2009.153
  3. Kim JS, Song W, Kim HS, Cho HC, Lee KM, Choi MS, et al. Association between the methicillin resistance of clinical isolates of Staphylococcus aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype classification, and their toxin gene profiles. Diagn. Microbiol Infect Dis. 2006;56:289-295. https://doi.org/10.1016/j.diagmicrobio.2006.05.003
  4. Lee K, Lee MA, Lee CH, Lee J, Roh KH, Kim S, et al. Increase of ceftazidime- and fluoroquinolone-resistant Klebsiella pneumoniae and imipenem-resistant Acinetobacter spp. in Korea: analysis of KONSAR study data from 2005 and 2007. Yonsei Med J. 2010;51:901-911. https://doi.org/10.3349/ymj.2010.51.6.901
  5. Akcam FZ, Tinaz GB, Kaya O, Tigli A, Ture E, Hosoglu S. Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive Staphylococcus aureus, and comparison of mecA with femA, femB, femX positivities. Microbiol Res. 2009;164:400-403. https://doi.org/10.1016/j.micres.2007.02.012
  6. Pai HJ. Nosocomial infections in intensive care unit: Epidemiology and control strategy. Hanyang Medical Reviews. 2011;31:153-158. https://doi.org/10.7599/hmr.2011.31.3.153
  7. Timoney JF, Gillespie JH, Scott FW, Barlough JE. Hagan and Bruner's microbiology and infectious disease of domestic animals. 8th ed. Ithaca: Comstock publishing associates; 1988. p171-196.
  8. Lakshmi GJ. Mechanism of Resistance, Phenotyping and Genotyping of Methicillin Resistant Staphylococcus aureus: A Review. Int J Curr Microbiol. App Sci. 2015; 4:810-818.
  9. Hu DL, Omoe K, Inoue F, Kasai T, Yasujima M, Shinagawa K, et al. Comparative prevalence of superantigenic toxin genes in methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates. J Med Microbiol. 2008;57:1106-1112. https://doi.org/10.1099/jmm.0.2008/002790-0
  10. Choe HN, Park C, Kim HR, Baik KS, Kim SN, Seong CN. Characteristics and antibiotic susceptibility of imipenem-resistant clinical isolates producing carbapenemase. J Life Sci. 2010;20:1214-1220. https://doi.org/10.5352/JLS.2010.20.8.1214
  11. Oliveira DC, De Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46: 2155-2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002
  12. Monday SR, Bohach GA. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol. 1999;37:3411-3414.
  13. Gerber SI, Jones RC, Scott MV, Price JS, Dworkin MS, Filippell MB, et al. Management of outbreaks of methicillin-resistant Staphylococcus aureus infection in the neonatal intensive care unit: a consensus statement. Infect Control Hosp Epidemiol. 2006;27:139-145. https://doi.org/10.1086/501216
  14. CLSI. Performance standards for antimicrobial susceptibility testing; 19th informational supplement. CLSI document M100-S19. Wayne, PA: Clinical and Laboratory Standards Institute; 2009.
  15. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. Involvement of Panton-Valentine Leukocidin-producing staphycoccus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999;29:1128-1132. https://doi.org/10.1086/313461
  16. LoOseth A, Loncarevic S, Berdal KG. Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J Clin Microbiol. 2004;42:3869-3872. https://doi.org/10.1128/JCM.42.8.3869-3872.2004
  17. Lee CY, Schmidt JJ, Johnson-Winegar AD, Spero L, Iandolo JJ. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. J Bacteriol. 1987;169:3904-3909. https://doi.org/10.1128/jb.169.9.3904-3909.1987
  18. Jackson MP, landolo JJ. Sequence of the exfoliative toxin B gene of Staphylococcus aureus. J Bacteriol. 1986;167:726-728. https://doi.org/10.1128/jb.167.2.726-728.1986
  19. Oh HS, Lee SE, Kim HJ, Lee HJ, Oh MD, Choe KW. Health care workers' nasal carriage and outbreak control of epidemic methicillin-resistant staphylococcus aureus. Infection. 2001;33:25-33.
  20. Kim YG, Lee HS, Kang SK, Chang KS, Hwang SM. Correlation between the prevalence of superantigenic toxin genes and coagulase serotypes of Staphylococcus aureus isolates. J Bacteriol Virol. 2011;41:157-164. https://doi.org/10.4167/jbv.2011.41.3.157
  21. Baik KS, Ki GS, Choe HN, Park SC, Koh EC, Kim HR, et al. Toxins and antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from clinical specimens. J Life Sci. 2011;21:257-264. https://doi.org/10.5352/JLS.2011.21.2.257
  22. Sabouni F, Mahmoudi S, Bahador A, Pourakbari B, Sadeghi RH, Ashtiani MT, et al. Virulence factors of Staphylococcus aureus isolates in an Iranian referral children's hospital. Osong Public Health Res Perspect. 2014;2:96-100.
  23. Jung HJ, Cho JI, Song ES, Kim JJ, Kim KS. PCR detection of virulence genes encoding coagulase and other toxins among clinical methicillin-resistant Staphylococcus aureus. J Microbiol Biotechnol. 2005;33:207-214.
  24. Kim JS, Kim HS, Song W, Cho HC, Lee KM, Kim EC. Molecular epidermiology of methicillin-resistant Staphylococcus aureus isolates with toxic shock syndrome toxin and staphylococcal enterotoxin C genes. Korean J Lab Med. 2007;27:118-123. https://doi.org/10.3343/kjlm.2007.27.2.118

Cited by

  1. Differences in the Antibiotic Resistance Pattern of Staphylococcus aureus Isolated by Clinical Specimens in a University Hospital in South Korea vol.50, pp.2, 2016, https://doi.org/10.15324/kjcls.2018.50.2.85