DOI QR코드

DOI QR Code

Development of Quantitative Real-Time PCR Primers for Detection of Streptococcus sobrinus

  • Park, Soon-Nang (Korean Collection for Oral Microbiology, School of Dentistry, Chosun University) ;
  • Kook, Joong-Ki (Korean Collection for Oral Microbiology, School of Dentistry, Chosun University)
  • Received : 2016.08.13
  • Accepted : 2016.09.17
  • Published : 2016.09.30

Abstract

The purpose of this study was to develop Streptococcus sobrinus-specific qPCR primers based on the nucleotide sequence of the RNA polymerase ${\beta}-subunit$ gene (rpoB). The specificity of the primers was determined by conventional polymerase chain reaction (PCR) with 12 strains of S. sobrinus and 50 strains (50 species) of non-S. sobrinus bacteria. The sensitivity of the primers was determined by quantitative real-time PCR (qPCR) with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of S. sobrinus ATCC $33478^T$. The specificity data showed that the S. sobrinus-specific qPCR primers (RTSsob-F4/RTSsob-R4) detected only the genomic DNAs of S. sobrinus strains with a detection limit of up to 4 fg of S. sobrinus genomic DNA. Our results suggest that the RTSsob-F4/RTSsob-R4 primers are useful in detecting S. sobrinus with high sensitivity and specificity for epidemiological studies of dental caries..

Keywords

References

  1. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353-380.
  2. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721-5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  3. Whiley RA, Beighton D. Current classification of the oral streptococci. Oral Microbiol Immunol. 1998;13:195-216. https://doi.org/10.1111/j.1399-302X.1998.tb00698.x
  4. Park SN, Lim YK, Kook JK. Development of quantitative real-time PCR primers for detecting 42 oral bacterial species. Arch Microbiol. 2013;195:473-482. doi: 10.1007/s00203-013-0896-4.
  5. Wilson K. Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, editors. Current Protocols in Molecular Biology. New York: Greene Publ. Assoc. and Wiley Interscience; 1990. p. 241-245.
  6. Park SN, Kook JK. Development of quantitative real-time PCR primers for detection of Prevotella intermedia. Int J Oral Biol. 2015;40:205-210. http://dx.doi.org/10.11620/IJOB.2015.40.4.205
  7. Shin HS, Kim MJ, Kim HS, Park SN, Kim do K, Baek DH, Kim C, Kook JK. Development of strain-specific PCR primers for the identification of Fusobacterium nucleatum subsp. fusiforme ATCC 51190T and subsp. vincentii ATCC 49256T. Anaerobe 2010;16:43-46. doi: 10.1016/j.anaerobe.2009.04.003.
  8. Choi EJ, Lee SH, Kim YJ. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries. Int J Paediatr Dent. 2009;19:141-147. doi: 10.1111/j.1365-263X.2008.00942.x.
  9. Krieg NR. Identification of Procaryotes. In Boone DR, Castenholz RW, Garrity GM, editors. Bergeys manual of systematic bacteriology. 2nd ed. vol. 1. New York: Springer; 2001. p. 33-38.
  10. Kozarov E, Sweier D, Shelburne C, Progulske-Fox A, Lopatin D. Detection of bacterial DNA in atheromatous plaques by quantitative PCR. Microbes Infect. 2006;8:687-693. http://dx.doi.org/10.1016/j.micinf.2005.09.004.
  11. Park SN, Park JY, Kook JK. Development of Porphyromonas gingivalis-specific quantitative real-time PCR primers based on the nucleotide sequence of rpoB. J Microbiol. 2011;49:315-319. doi: 10.1007/s12275-011-1028-y.
  12. Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem. 1996;271: 27969-7974. https://doi.org/10.1074/jbc.271.44.27969