DOI QR코드

DOI QR Code

Ultrastructure Characterization of Hemcytes in Larvae of Protaetia brevitarsis seulensis

흰점박이꽃무지 유충의 혈구세포에 대한 형태학적 특성

  • Cho, Saeyoull (Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University)
  • 조세열 (강원대학교 생물자원과학부 응용생물전공)
  • Received : 2016.05.19
  • Accepted : 2016.06.14
  • Published : 2016.09.01

Abstract

In this study, we used electron microscopic analysis to characterize the hemocytes in the last larva of Protaetia brevitarsis seulensis (Colbe) (Cetoniidae, Coleoptera). Granulocytes (GR), plasmatocytes (PL), oenocytoids (OE), spherulocytes (SP), prohemocytes (PR) and adipohemocytes (AD) were classified based on their size and ultrastructural differences in the circulating hemocytes. Many dark granules (<$1{\mu}m$ in diameter) in the GR's cytoplasm were observed and well-developed mitochondria, endoplasmic reticulum (ER), nucleus, and Golgi complex were also seen. After microorganisms infected, the GRs were morphologically activated and phagocytosed them. Especially, dark granules (lysosomes) were fused themselves and these bigger granules finally agglomerate together with microorganisms. Other hemocytes seem to have no immune functions.

본 연구는 흰점박이꽃무지(Protaetia brevitarsis seulensis (Colbe) (Cetoniidae, Coleoptera) 유충의 혈림프에 존재하는 혈구세포들의 형태학적 특성분석을 위하여 수행하였다. 흰점박이꽃무지 유충 혈강 내에는 과립혈구세포, 세포질혈구세포, 편도혈구세포, 구상적혈구세포, 전혈구세포, 지방혈구세포 총 여섯 종류의 혈구세포들이 관찰 되었다. 그 중 과립혈구세포는 핵, 미토콘드리아, 골지체를 포함하여 잘 발달된 세포소기관들이 관찰 되었고 외래물질 침입시 면역학적 식균작용을 수행하는 것으로 밝혀졌다. 특히, 과립혈구세포의 세포질에는 잘 발달된 리소좀(<$1{\mu}m$ 직경)들이 세포막 주변으로 분포되어 존재하고 있음을 알 수 있었다. 식균된 외래물질은 다양한 크기의 리소좀들과 서로 합쳐지면서 외래물질을 제거하는 것으로 판단된다. 그 외 다섯 종의 혈구세포들은 외래물질 침입시 면역학적 활성화와 관계가 없는 것으로 관찰되었다.

Keywords

References

  1. Alves e Silva, T.L., Vasconcellos, L.R.C., Lopes, A.H., Souto-Padron, T., 2013. The immune response of hemocytes of the insect Oncopeltus fasciatus against the Flagellate Phytomonas serpens. PLoS ONE 8, e72076. https://doi.org/10.1371/journal.pone.0072076
  2. Arnold, J.W., 1974. The hemocytes of insects. Academic Press. New York, U.A.S. p. 201-254.
  3. Giglio, A., Battistella, S., Talarico, F.F., Brandmayr, T.Z., Giulianini, P.G., 2008. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae):Cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron. 39, 552-558. https://doi.org/10.1016/j.micron.2007.07.004
  4. Giulianini, P.G., Bertolo, F., Battistella, S., Amirante. G.A., 2003. Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera, Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Tissue Cell 35, 243-251. https://doi.org/10.1016/S0040-8166(03)00037-5
  5. Gupta, A.P., 1979. Insect hemocytes development, forms, functions and techniques. Cambridge University Press. New York, U.S.A. p. 83.
  6. Gupta, A.P., 1985. Cellular elements in hemolymph. Pergamon Press. Oxford, Engalnd. p. 401-451.
  7. Hoffmann, J.A., 2003. The immune response of Drosophila. Nature 426, 33-38. https://doi.org/10.1038/nature02021
  8. Huang, F., Shi, M., Chen, Y.F., Cao, T.T., Chen, X.X., 2008. Oogenesis of Diadegma semiclausum (Hymenoptera: Ichneumonidae) and its associated polydnavirus. Microsc. Res. Tech. 71, 676-683. https://doi.org/10.1002/jemt.20594
  9. Hwang, S., Bang, K., Lee, J., Cho, S. 2015. Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms. PLoS ONE 10, e0128519. https://doi.org/10.1371/journal.pone.0128519
  10. Jones, J.C., 1962. Current concepts concerning insect hemocytes. Rev. Am. Zool. 2, 209-246. https://doi.org/10.1093/icb/2.2.209
  11. Kwon, H., Bang, K., Cho, S., 2014. Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: Involvement of granulocyte-mediated phagocytosis. PLoS ONE 9, e103620. https://doi.org/10.1371/journal.pone.0103620
  12. Kwon, O., 2009. Effect of different diets on larval growth of Protaetia brevitarsis seulensis (Kolbe)(Coleoptera:Cetoniidae). Entomol. Res. 39, 152-154. https://doi.org/10.1111/j.1748-5967.2009.00213.x
  13. Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
  14. Liu, F., Xu, Q., Zhang, Q., Lu, A., Beerntsen, B.T., Ling, E., 2013. Hemocytes and hematopoiesis in the silkworm, Bombyx mori Insect Sci. J. 10, 102-109.
  15. Manachini, B., Arizza, V., Parrinello, D., Parrinello, N., 2011. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Invertebr. Pathol. 106, 360-365. https://doi.org/10.1016/j.jip.2010.12.006
  16. Milton, C.C., Grusche, F.A., Degoutin, J.L., Yu, E., Dai, Q., Lai, E.C., Harvey, K.F., 2014. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Curr. Biol. 24, 2673-2680. https://doi.org/10.1016/j.cub.2014.10.031
  17. Pandey, J.P., Tiwari, R.K., 2012. An overview of insect hemocyte science and its future application in applied and iomedical fields. Am. J. Biochem. Mole. Biol. 2, 82-105. https://doi.org/10.3923/ajbmb.2012.82.105
  18. Silverman, N., Maniatis, T., 2001. $NF-{\kappa}B$ signaling pathways in mammalian and insect innate immunity. Genes & Dev. 15, 2321-2342. https://doi.org/10.1101/gad.909001
  19. Strand, M.R., 2008. The insect cellular immune response. Insect Sci. 15, 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
  20. Tauszig, S., Emmanuelle, J., Hoffmann, J.A., Imler, J., 2000. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 97, 10520-10525. https://doi.org/10.1073/pnas.180130797
  21. Tsakas, S,, Marmaras, V.J., 2010. Insect immunity and its signaling: an overview. Invertebrate Surv. J. 7, 228-238.
  22. Williams, M.J., 2007. Drosophila hemopoiesis and cellular immunity. J. Immunol. 178, 4711-4716. https://doi.org/10.4049/jimmunol.178.8.4711
  23. Yamashita, M., Iwabuchi, K., 2001. Bombyx mori prohemocyte division and differentiation in individual microcultures. J. Insect Physiol. 47, 325-331. https://doi.org/10.1016/S0022-1910(00)00144-X

Cited by

  1. Hemocyte Morphology and Cellular Immune Response in Termite (Reticulitermes speratus) vol.18, pp.2, 2018, https://doi.org/10.1093/jisesa/iey039