DOI QR코드

DOI QR Code

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L. (Department of Mechanical Engineering, S.V.N.I.T.) ;
  • Lal, Achchhe (Department of Mechanical Engineering, S.V.N.I.T.)
  • Received : 2015.11.05
  • Accepted : 2016.06.19
  • Published : 2016.10.25

Abstract

This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).

Keywords

References

  1. Abbas, B.A.H. and Thomas, J. (1978), "Dynamic stability of Timoshenko beams resting on an elastic foundation", J. Sound Vib., 60(1), 33-44. https://doi.org/10.1016/0022-460X(78)90399-1
  2. Ahuja, R. and Duffield, R.C. (1975), "Parametric instability of variable cross-section beams resting on an elastic foundation", J. Sound Vib., 39(2), 159-174. https://doi.org/10.1016/S0022-460X(75)80215-X
  3. Baldinger, M., Belyaev, A.K. and Irschik, H. (2000), "Principal and second instability regions of sheardeformable polygonal plates", Comput. Mech., 26, 288-94. https://doi.org/10.1007/s004660000172
  4. Bert, C.W. and Birman, V. (1987), "Dynamic instability of shear deformable antisymmetric angle-ply plates", Int. J. Solid. Struct., 23(7), 1053-61. https://doi.org/10.1016/0020-7683(87)90096-5
  5. Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden- Day, Oakland, Calif.
  6. Chang, T.P. and Chang, H.C. (1994), "Stochastic dynamic finite element analysis of a non uniform beam", Int. J. Solid Struct., 31(5), 587-597. https://doi.org/10.1016/0020-7683(94)90139-2
  7. Chattopadhyay, A. and Radu, A.G. (2000), "Dynamic instability of composite laminates using a higher order theory", Comput. Struct., 77, 453-60. https://doi.org/10.1016/S0045-7949(00)00005-5
  8. Chen, L.W. and Yang, J.Y. (1990), "Dynamic stability of laminated composite plates by the finite element method", Comput. Struct., 36, 845-51. https://doi.org/10.1016/0045-7949(90)90155-U
  9. Darabi, M., Darvizeh, M. and Darvizeh, A. (2007), "Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading", Compos. Struct., 83(2), 201-11. https://doi.org/10.1016/j.compstruct.2007.04.014
  10. Datta, P.K. and Chakraborty S. (1982), "Parametric instability of tapered beam by finite element method", J. Mech. Eng., 24(4), 205.
  11. Dey, S.S. (1979), "Finite element method for random response of structures due to stochastic excitation", Comput. Meth. Appl. Mech. Eng., 20(2), 173-194. https://doi.org/10.1016/0045-7825(79)90016-1
  12. Evan-Iwanowski, R.M. (1965), "The parametric response of structures", Appl. Mech. Rev., 18, 699-702.
  13. Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech. A/Solid., 30, 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
  14. Fu, Y., Wang, J. and Mao, Y. (2012), "Nonlinear analysis of bucklng, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Math. Model., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059
  15. Ganapathi, M., Boisse P. and Solaut D. (1999), "Non-linear dynamic stability analysis of composite laminates under periodic in-plane compressive loads", Int. J. Numer. Meth. Eng., 46, 943-956. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6<943::AID-NME732>3.0.CO;2-L
  16. Ganapathi, M., Varadan, T.K. and Balamurugan, V. (1994), "Dynamic instability of laminated composite curved panels using finite element method", Compos. Struct., 53, 335-42. https://doi.org/10.1016/0045-7949(94)90206-2
  17. Giuseppe, Q. (2011), "Finite element analysis with uncertain probabilities", Comput. Meth. Appl. Mech. Eng., 200(1-4), 114-129. https://doi.org/10.1016/j.cma.2010.07.018
  18. Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1
  19. Hu, H.T. and Tzeng, W.L. (2000), "Buckling analysis of skew laminate plates subjected to uniaxial inplane loads", Thin Wall Struct., 38(1), 53-77. https://doi.org/10.1016/S0263-8231(00)00029-X
  20. Ibrahim, R.A. (1987), "Structural dynamics with parameter uncertainties", Appl. Mech. Rev., 40(3), 309-328. https://doi.org/10.1115/1.3149532
  21. Iwankiewicz, R. and Nielsen, S.R.K. (1999), Advanced Method In Stochastic Dynamics of Nonlinear Systems, Aalborg University Press.
  22. Jagtap, K.R., Lal, A. and Singh, B.N. (2011), "Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment", Compo. Struct., 93(12), 3185-3199. https://doi.org/10.1016/j.compstruct.2011.06.010
  23. Jagtap, K.R., Lal, A. and Singh, B.N. (2013), "Thermomechanical elastic postbuckling of functionally graded materials plate with random system propertie", Int. J. Comp. Meth. Eng. Sci. Mech., 14, 175-194. https://doi.org/10.1080/15502287.2012.711423
  24. Kapania, R.K. and Park, S. (1996), "Nonlinear transient response and its sensitivity using finite elements in time", Comput. Mech., 17(5), 306-317. https://doi.org/10.1007/BF00368553
  25. Kareem, A. and Sun W.J. (1990), "Dynamic response of structures with uncertain damping", Eng. Struct., 12(1), 2-8. https://doi.org/10.1016/0141-0296(90)90032-N
  26. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
  27. Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4
  28. Kiani, Y. and Eslami, M.R. (2013), "Thermomechanical buckling of temperature dependent FGM beams", Lat. Am. J. Solid. Struct., 10, 223-246. https://doi.org/10.1590/S1679-78252013000200001
  29. Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method, John Wiley & Sons.
  30. Lal, A., Jagtap, K.R. and Singh, B.N. (2013), "Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties", Appl. Math. Model., 37(7), 2900-2920. https://doi.org/10.1016/j.apm.2012.06.013
  31. Lal, A., Kulkarni, N.M. and Singh, B.N. (2015), "Stochastic thermal post buckling response of elastically supported laminated piezoelectric composite plate using micromechanical approach", Curv. Layer. Struct., 2, 331-350.
  32. Lal, A., Saidane, N. and Singh, B.N. (2012a), "Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panels", Smart Struct. Syst., 9(6), 505-534. https://doi.org/10.12989/sss.2012.9.6.505
  33. Lal, A., Singh, H. and Shegokar, N.L. (2012b), "FEM model for stochastic mechanical and thermal postbuckling response of functionally graded material plates applied to panels with circular and square holes having material randomness", Int. J. Mech. Sci., 62(1), 18-33. https://doi.org/10.1016/j.ijmecsci.2012.05.010
  34. Liao, C.L. and Cheng, C.R. (1994), "Dynamic stability of stiffened laminated composite plates and shells subjected to in-plane pulsating forces", Int. J. Numer. Meth. Eng., 37, 4167-83. https://doi.org/10.1002/nme.1620372404
  35. Liu, W.K., Belytschko, T. and Mani, A. (1986), "Probabilistic finite elements for nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 56(1), 61-81. https://doi.org/10.1016/0045-7825(86)90136-2
  36. Mohanty, S.C., Dash, R.R. and Rout, T. (2011), "Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation", Nucl. Eng. Des., 241(8), 2698- 2715. https://doi.org/10.1016/j.nucengdes.2011.05.040
  37. Moorthy, J. and Reddy, J.N. (1990), "Parametric Instability of laminated composite plates with transverse shear deformation", Int. J. Solid. Struct., 26, 801-811. https://doi.org/10.1016/0020-7683(90)90008-J
  38. Namachchivaya, N. and Lin, Y.K. (2003), Nonlinear Stochastic Dynamics, Solid Mechanics and Its Applications, Kluwar Academic publishers, Dordrecht.
  39. Nayfeh, A. (1993), Introduction to Perturbation Techniques, Wiley-Inter science.
  40. Ng, T.Y., Lam, K.Y., Liew, K.M. and Reddy, J.N. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solid. Struct., 38(8), 1295-1309. https://doi.org/10.1016/S0020-7683(00)00090-1
  41. Nigam, N.C. and Narayanan, S. (1994), Applications of Random Vibrations, Narosa, New Delhi.
  42. Onkar, A.K. and Yadav, D. (2005), "Forced nonlinear vibration of laminated composite plates with random material properties", Compos. Struct., 70(3), 334-342. https://doi.org/10.1016/j.compstruct.2004.08.037
  43. Patel, B.P., Singh, S. and Nath, Y. (2006), "Stability and nonlinear dynamic behaviour of cross-ply laminated heated cylindrical shells", Lat. Am. J. Solid. Struct., 3, 245-26.
  44. Pradyumna, S. and Bandyopadhyay, J.N. (2010), "Dynamic instability of functionally graded shells using higher-order theory", J. Eng. Mech., 136(5), 551-561. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000095
  45. Raj, B.N., Iyengar, N.G.R. and Yadav, D. (1998), "Response of composite plates with random material properties using Monte Carlo Simulation", Adv. Compos. Mater., 7(3), 219-237. https://doi.org/10.1163/156855198X00165
  46. Ren, Y.J., Elishakoff, I. and Shinozuka, M. (1997), "Finite elelemt method for stochastic beams based on variational principles", J. Appl. Mech., 64(3), 664-669. https://doi.org/10.1115/1.2788944
  47. Rollot, O. and Elishakoff, I. (2003), "Large variation finite element method for beams with stochastic stiffness", Chao. Solit. Fract., 17(4), 749-779. https://doi.org/10.1016/S0960-0779(02)00470-8
  48. Sahu, S.K. and Datta, P.K. (2007), "Research advances in the dynamic stability behavior of plates and shells: 1987-2005 Part I: conservative system", Appl. Mech. Rev., 60, 65-75. https://doi.org/10.1115/1.2515580
  49. Shaker, A., Abdelrahman, W., Tawfik, M. and Sadek, E. (2008), "Stochastic finite element analysis of the free vibration of laminated composite plates", Comput. Mech., 41, 493-501.
  50. Shegokar, N.L. and Lal, A. (2013a), "Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1016/j.compstruct.2012.12.032
  51. Shegokar, N.L. and Lal, A. (2013b), "Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded beam subjected to thermo-piezoelectric loadings with material uncertainties", Meccanica, 49, 1039-1068.
  52. Shegokar, N.L. and Lal, A. (2014), "Thermoelectromechanically induced stochastic post buckling response of piezoelectric functionally graded beam", Int. J. Mech. Mater. Des., 10, 329-349. https://doi.org/10.1007/s10999-014-9246-1
  53. Shinozuka, M. and Astill, C.J. (1972), "Random eigenvalue problems in structural analysis", AIAA J., 10(4), 456-462. https://doi.org/10.2514/3.50119
  54. Singha, M.K., Ramachandra, L.S. and Bandyopadhyay, J.N. (2001), "Stability and strength of composite skew plates under thermomechanical loads", Am. Inst. Aeronaut. J., 39(8), 1618-23. https://doi.org/10.2514/2.1489
  55. Srinivasan, R.S. and Chellapandi, P. (1986), "Dynamic stability of rectangular laminated composite plates", Comput. Struct., 24(2), 233-8. https://doi.org/10.1016/0045-7949(86)90282-8
  56. Stefanou, G. (2009), "The stochastic finite element method: Past, present and future, Engineering", Comput. Meth. Appl. Mech. Eng., 198(9), 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007
  57. Vanmarcke, E. and Grigoriu, M. (1983), "Stochastic finite element analysis of simple beams", J. Eng. Mech., 109(5), 1203-1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  58. Wang, S. and Dawe, D.J. (2002), "Dynamic instability of composite laminated rectangular plates and prismatic plate structures", Comput. Meth. Appl. Mech. Eng., 191, 1791-826. https://doi.org/10.1016/S0045-7825(01)00354-1
  59. Wu, L., Wang, H.J. and Wang, D.B. (2007), "Dynamic stability analysis of FGM plates by the moving least squares differential quadraturemethod", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011
  60. Yang, J., Liew, K.M. and Kitipornchai, S. (2004), "Dynamic stability of laminated FGM plates based on higher-order shear deformation theory", Comput. Mech., 33(4), 305-315. https://doi.org/10.1007/s00466-003-0533-1
  61. Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", Int. J. Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006
  62. Young, T.H. and Chen, F.Y. (1994), "Stability of skew plates subjected to aerodynamic and in-plane forces", J. Sound Vib., 171(5), 603-15. https://doi.org/10.1006/jsvi.1994.1144
  63. Zhao, L. and Chen, Q. (1998), "A dynamic stochastic finite element method based on dynamic constraint mode", Comput. Meth. Appl. Mech. Eng., 161(3-4), 245-25. https://doi.org/10.1016/S0045-7825(97)00319-8
  64. Zhu, J., Chen, C., Shen, Y. and Wang, S. (2005), "Dynamic stability of functionally graded piezoelectric circular cylindrical shells", Mater. Lett., 59(4), 477-85. https://doi.org/10.1016/j.matlet.2004.10.027

Cited by

  1. Non-linear fracture analysis of multilayered two-dimensional graded beams 2018, https://doi.org/10.1108/MMMS-09-2017-0107
  2. Non-linear delamination in two-dimensional functionally graded multilayered beam vol.9, pp.5, 2018, https://doi.org/10.1108/IJSI-12-2017-0079
  3. Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell vol.7, pp.4, 2016, https://doi.org/10.12989/aas.2020.7.4.291
  4. Delamination of multilayered non-linear elastic shafts in torsion vol.48, pp.3, 2020, https://doi.org/10.5937/fme2003681r