References
- Abbas, B.A.H. and Thomas, J. (1978), "Dynamic stability of Timoshenko beams resting on an elastic foundation", J. Sound Vib., 60(1), 33-44. https://doi.org/10.1016/0022-460X(78)90399-1
- Ahuja, R. and Duffield, R.C. (1975), "Parametric instability of variable cross-section beams resting on an elastic foundation", J. Sound Vib., 39(2), 159-174. https://doi.org/10.1016/S0022-460X(75)80215-X
- Baldinger, M., Belyaev, A.K. and Irschik, H. (2000), "Principal and second instability regions of sheardeformable polygonal plates", Comput. Mech., 26, 288-94. https://doi.org/10.1007/s004660000172
- Bert, C.W. and Birman, V. (1987), "Dynamic instability of shear deformable antisymmetric angle-ply plates", Int. J. Solid. Struct., 23(7), 1053-61. https://doi.org/10.1016/0020-7683(87)90096-5
- Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden- Day, Oakland, Calif.
- Chang, T.P. and Chang, H.C. (1994), "Stochastic dynamic finite element analysis of a non uniform beam", Int. J. Solid Struct., 31(5), 587-597. https://doi.org/10.1016/0020-7683(94)90139-2
- Chattopadhyay, A. and Radu, A.G. (2000), "Dynamic instability of composite laminates using a higher order theory", Comput. Struct., 77, 453-60. https://doi.org/10.1016/S0045-7949(00)00005-5
- Chen, L.W. and Yang, J.Y. (1990), "Dynamic stability of laminated composite plates by the finite element method", Comput. Struct., 36, 845-51. https://doi.org/10.1016/0045-7949(90)90155-U
- Darabi, M., Darvizeh, M. and Darvizeh, A. (2007), "Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading", Compos. Struct., 83(2), 201-11. https://doi.org/10.1016/j.compstruct.2007.04.014
- Datta, P.K. and Chakraborty S. (1982), "Parametric instability of tapered beam by finite element method", J. Mech. Eng., 24(4), 205.
- Dey, S.S. (1979), "Finite element method for random response of structures due to stochastic excitation", Comput. Meth. Appl. Mech. Eng., 20(2), 173-194. https://doi.org/10.1016/0045-7825(79)90016-1
- Evan-Iwanowski, R.M. (1965), "The parametric response of structures", Appl. Mech. Rev., 18, 699-702.
- Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech. A/Solid., 30, 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
- Fu, Y., Wang, J. and Mao, Y. (2012), "Nonlinear analysis of bucklng, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Math. Model., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059
- Ganapathi, M., Boisse P. and Solaut D. (1999), "Non-linear dynamic stability analysis of composite laminates under periodic in-plane compressive loads", Int. J. Numer. Meth. Eng., 46, 943-956. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6<943::AID-NME732>3.0.CO;2-L
- Ganapathi, M., Varadan, T.K. and Balamurugan, V. (1994), "Dynamic instability of laminated composite curved panels using finite element method", Compos. Struct., 53, 335-42. https://doi.org/10.1016/0045-7949(94)90206-2
- Giuseppe, Q. (2011), "Finite element analysis with uncertain probabilities", Comput. Meth. Appl. Mech. Eng., 200(1-4), 114-129. https://doi.org/10.1016/j.cma.2010.07.018
- Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1
- Hu, H.T. and Tzeng, W.L. (2000), "Buckling analysis of skew laminate plates subjected to uniaxial inplane loads", Thin Wall Struct., 38(1), 53-77. https://doi.org/10.1016/S0263-8231(00)00029-X
- Ibrahim, R.A. (1987), "Structural dynamics with parameter uncertainties", Appl. Mech. Rev., 40(3), 309-328. https://doi.org/10.1115/1.3149532
- Iwankiewicz, R. and Nielsen, S.R.K. (1999), Advanced Method In Stochastic Dynamics of Nonlinear Systems, Aalborg University Press.
- Jagtap, K.R., Lal, A. and Singh, B.N. (2011), "Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment", Compo. Struct., 93(12), 3185-3199. https://doi.org/10.1016/j.compstruct.2011.06.010
- Jagtap, K.R., Lal, A. and Singh, B.N. (2013), "Thermomechanical elastic postbuckling of functionally graded materials plate with random system propertie", Int. J. Comp. Meth. Eng. Sci. Mech., 14, 175-194. https://doi.org/10.1080/15502287.2012.711423
- Kapania, R.K. and Park, S. (1996), "Nonlinear transient response and its sensitivity using finite elements in time", Comput. Mech., 17(5), 306-317. https://doi.org/10.1007/BF00368553
- Kareem, A. and Sun W.J. (1990), "Dynamic response of structures with uncertain damping", Eng. Struct., 12(1), 2-8. https://doi.org/10.1016/0141-0296(90)90032-N
- Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4
- Kiani, Y. and Eslami, M.R. (2013), "Thermomechanical buckling of temperature dependent FGM beams", Lat. Am. J. Solid. Struct., 10, 223-246. https://doi.org/10.1590/S1679-78252013000200001
- Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method, John Wiley & Sons.
- Lal, A., Jagtap, K.R. and Singh, B.N. (2013), "Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties", Appl. Math. Model., 37(7), 2900-2920. https://doi.org/10.1016/j.apm.2012.06.013
- Lal, A., Kulkarni, N.M. and Singh, B.N. (2015), "Stochastic thermal post buckling response of elastically supported laminated piezoelectric composite plate using micromechanical approach", Curv. Layer. Struct., 2, 331-350.
- Lal, A., Saidane, N. and Singh, B.N. (2012a), "Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panels", Smart Struct. Syst., 9(6), 505-534. https://doi.org/10.12989/sss.2012.9.6.505
- Lal, A., Singh, H. and Shegokar, N.L. (2012b), "FEM model for stochastic mechanical and thermal postbuckling response of functionally graded material plates applied to panels with circular and square holes having material randomness", Int. J. Mech. Sci., 62(1), 18-33. https://doi.org/10.1016/j.ijmecsci.2012.05.010
- Liao, C.L. and Cheng, C.R. (1994), "Dynamic stability of stiffened laminated composite plates and shells subjected to in-plane pulsating forces", Int. J. Numer. Meth. Eng., 37, 4167-83. https://doi.org/10.1002/nme.1620372404
- Liu, W.K., Belytschko, T. and Mani, A. (1986), "Probabilistic finite elements for nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 56(1), 61-81. https://doi.org/10.1016/0045-7825(86)90136-2
- Mohanty, S.C., Dash, R.R. and Rout, T. (2011), "Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation", Nucl. Eng. Des., 241(8), 2698- 2715. https://doi.org/10.1016/j.nucengdes.2011.05.040
- Moorthy, J. and Reddy, J.N. (1990), "Parametric Instability of laminated composite plates with transverse shear deformation", Int. J. Solid. Struct., 26, 801-811. https://doi.org/10.1016/0020-7683(90)90008-J
- Namachchivaya, N. and Lin, Y.K. (2003), Nonlinear Stochastic Dynamics, Solid Mechanics and Its Applications, Kluwar Academic publishers, Dordrecht.
- Nayfeh, A. (1993), Introduction to Perturbation Techniques, Wiley-Inter science.
- Ng, T.Y., Lam, K.Y., Liew, K.M. and Reddy, J.N. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solid. Struct., 38(8), 1295-1309. https://doi.org/10.1016/S0020-7683(00)00090-1
- Nigam, N.C. and Narayanan, S. (1994), Applications of Random Vibrations, Narosa, New Delhi.
- Onkar, A.K. and Yadav, D. (2005), "Forced nonlinear vibration of laminated composite plates with random material properties", Compos. Struct., 70(3), 334-342. https://doi.org/10.1016/j.compstruct.2004.08.037
- Patel, B.P., Singh, S. and Nath, Y. (2006), "Stability and nonlinear dynamic behaviour of cross-ply laminated heated cylindrical shells", Lat. Am. J. Solid. Struct., 3, 245-26.
- Pradyumna, S. and Bandyopadhyay, J.N. (2010), "Dynamic instability of functionally graded shells using higher-order theory", J. Eng. Mech., 136(5), 551-561. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000095
- Raj, B.N., Iyengar, N.G.R. and Yadav, D. (1998), "Response of composite plates with random material properties using Monte Carlo Simulation", Adv. Compos. Mater., 7(3), 219-237. https://doi.org/10.1163/156855198X00165
- Ren, Y.J., Elishakoff, I. and Shinozuka, M. (1997), "Finite elelemt method for stochastic beams based on variational principles", J. Appl. Mech., 64(3), 664-669. https://doi.org/10.1115/1.2788944
- Rollot, O. and Elishakoff, I. (2003), "Large variation finite element method for beams with stochastic stiffness", Chao. Solit. Fract., 17(4), 749-779. https://doi.org/10.1016/S0960-0779(02)00470-8
- Sahu, S.K. and Datta, P.K. (2007), "Research advances in the dynamic stability behavior of plates and shells: 1987-2005 Part I: conservative system", Appl. Mech. Rev., 60, 65-75. https://doi.org/10.1115/1.2515580
- Shaker, A., Abdelrahman, W., Tawfik, M. and Sadek, E. (2008), "Stochastic finite element analysis of the free vibration of laminated composite plates", Comput. Mech., 41, 493-501.
- Shegokar, N.L. and Lal, A. (2013a), "Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1016/j.compstruct.2012.12.032
- Shegokar, N.L. and Lal, A. (2013b), "Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded beam subjected to thermo-piezoelectric loadings with material uncertainties", Meccanica, 49, 1039-1068.
- Shegokar, N.L. and Lal, A. (2014), "Thermoelectromechanically induced stochastic post buckling response of piezoelectric functionally graded beam", Int. J. Mech. Mater. Des., 10, 329-349. https://doi.org/10.1007/s10999-014-9246-1
- Shinozuka, M. and Astill, C.J. (1972), "Random eigenvalue problems in structural analysis", AIAA J., 10(4), 456-462. https://doi.org/10.2514/3.50119
- Singha, M.K., Ramachandra, L.S. and Bandyopadhyay, J.N. (2001), "Stability and strength of composite skew plates under thermomechanical loads", Am. Inst. Aeronaut. J., 39(8), 1618-23. https://doi.org/10.2514/2.1489
- Srinivasan, R.S. and Chellapandi, P. (1986), "Dynamic stability of rectangular laminated composite plates", Comput. Struct., 24(2), 233-8. https://doi.org/10.1016/0045-7949(86)90282-8
- Stefanou, G. (2009), "The stochastic finite element method: Past, present and future, Engineering", Comput. Meth. Appl. Mech. Eng., 198(9), 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007
- Vanmarcke, E. and Grigoriu, M. (1983), "Stochastic finite element analysis of simple beams", J. Eng. Mech., 109(5), 1203-1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
- Wang, S. and Dawe, D.J. (2002), "Dynamic instability of composite laminated rectangular plates and prismatic plate structures", Comput. Meth. Appl. Mech. Eng., 191, 1791-826. https://doi.org/10.1016/S0045-7825(01)00354-1
- Wu, L., Wang, H.J. and Wang, D.B. (2007), "Dynamic stability analysis of FGM plates by the moving least squares differential quadraturemethod", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011
- Yang, J., Liew, K.M. and Kitipornchai, S. (2004), "Dynamic stability of laminated FGM plates based on higher-order shear deformation theory", Comput. Mech., 33(4), 305-315. https://doi.org/10.1007/s00466-003-0533-1
- Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", Int. J. Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006
- Young, T.H. and Chen, F.Y. (1994), "Stability of skew plates subjected to aerodynamic and in-plane forces", J. Sound Vib., 171(5), 603-15. https://doi.org/10.1006/jsvi.1994.1144
- Zhao, L. and Chen, Q. (1998), "A dynamic stochastic finite element method based on dynamic constraint mode", Comput. Meth. Appl. Mech. Eng., 161(3-4), 245-25. https://doi.org/10.1016/S0045-7825(97)00319-8
- Zhu, J., Chen, C., Shen, Y. and Wang, S. (2005), "Dynamic stability of functionally graded piezoelectric circular cylindrical shells", Mater. Lett., 59(4), 477-85. https://doi.org/10.1016/j.matlet.2004.10.027
Cited by
- Non-linear fracture analysis of multilayered two-dimensional graded beams 2018, https://doi.org/10.1108/MMMS-09-2017-0107
- Non-linear delamination in two-dimensional functionally graded multilayered beam vol.9, pp.5, 2018, https://doi.org/10.1108/IJSI-12-2017-0079
- Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell vol.7, pp.4, 2016, https://doi.org/10.12989/aas.2020.7.4.291
- Delamination of multilayered non-linear elastic shafts in torsion vol.48, pp.3, 2020, https://doi.org/10.5937/fme2003681r