과제정보
연구 과제 주관 기관 : University of Kashan
참고문헌
- Ansari, R., Faghih-Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Asadi, H. and Aghdam, M.M. (2014), "Large amplitude vibration and post-buckling analysis of variable cross-section composite beams on nonlinear elastic foundation", Int. J. Mech. Sci., 79, 47-55. https://doi.org/10.1016/j.ijmecsci.2013.11.017
- Attard, M.M. (2003), "Finite strain-beam theory", Int. J. Solid. Struct., 40, 4563-4584. https://doi.org/10.1016/S0020-7683(03)00216-6
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882
- Dong, X.J., Meng, G., Li, H.G. and Ye, L. (2005), "Vibration analysis of a stepped laminated composite Timoshenko beam", Mech. Res. Commun., 32, 572-581. https://doi.org/10.1016/j.mechrescom.2005.02.014
- Du, H., Lim, M.K. and Lin, R.M. (1995), "Application of generalized differential quadrature to vibration analysis", J. Sound Vib., 181, 279-273. https://doi.org/10.1006/jsvi.1995.0140
- Foda, M.A. (1999), "Influence of shear deformation and rotary inertia on nonlinear free vibration of beam with pinned ends", J. Comput. Struct., 71, 663-670. https://doi.org/10.1016/S0045-7949(98)00299-5
- Ghasemi, A.R., Taheri-Behrooz, F., Farahani, S.M.N. and Mohandes, M. (2016), "Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected different boundary conditions", J. Vib. Control, 22(3), 799-811. https://doi.org/10.1177/1077546314528965
- Gunda, J.B., Gupta, R.K., Janardhan, G.R. and Rao, G.V. (2010), "Large amplitude free vibration analysis of Timoshenko beams using a relatively simple finite element formulation", Int. J. Mech. Sci., 52, 1597-1604. https://doi.org/10.1016/j.ijmecsci.2010.07.009
- Guo, Q. and Zhong, H. (2004), "Non-linear vibration analysis of beams by a spline-based differential quadrature method", J. Sound Vib., 269, 413-420. https://doi.org/10.1016/S0022-460X(03)00328-6
- Jafari-Talookolaei, R.A., Abedi, M., Kargarnovin, M.H. and Ahmadian, M.T. (2012), "An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia", Int. J. Mech. Sci., 65, 97-104. https://doi.org/10.1016/j.ijmecsci.2012.09.007
- Lewandowski, R. (1994), "Nonlinear free vibration of beams by the finite element and continuation method", J. Sound Vib., 170, 577-593. https://doi.org/10.1006/jsvi.1994.1088
- Li, J., Hua, H. and Shen, R. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Compos. Struct., 84, 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007
- Mohandes, M. and Ghasemi, A.R., (2016), "Finite strain analysis of nonlinear vibrations of symmetric laminated composite Timoshenko beams using generalized differential quadrature method", J. Vib. Control, 22(4), 940-954. https://doi.org/10.1177/1077546314538301
- Rahimi, G.H., Gazor, M.S., Hemmatnezhad, M. and Toorani, H. (2013), "On the postbuckling and free vibrations of FG Timoshenko beams", Compos. Struct., 95, 247-253. https://doi.org/10.1016/j.compstruct.2012.07.034
- Rayleigh, L. (1877), Theory of sound, Re-issue.
- Reddy, J.N. (2003), Mechanics of laminated composite plates and shells: Theory and analysis, CRC Press.
- Singh, G., Rao, G.V. and Lyengar, N.G.R. (1990), "Re-investigation of large-amplitude free vibrations of beams using finite elements", J. Sound Vib., 143, 351-355. https://doi.org/10.1016/0022-460X(90)90958-3
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Phil. Mag., 41, 744-746. https://doi.org/10.1080/14786442108636264
- Tsai, S.W (1980), Introduction to composite materials, Technomic.
- Wu, Y.L. and Shu, C. (2002), "Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli", Comput. Mech., 29, 477-485. https://doi.org/10.1007/s00466-002-0357-4
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B, 39, 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42, 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035
- Yardimoglu, B. and Yildirim, T. (2004), "Finite element model for vibration analysis of pre-twisted Timoshenko beam", J. Sound Vib., 273, 741-754. https://doi.org/10.1016/j.jsv.2003.05.003
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zhong, H. and Guo, Q. (2003), "Nonlinear vibration analysis of Timoshenko beams using the differential quadrature method", Nonlin. Dyn., 32, 223-243. https://doi.org/10.1023/A:1024463711325
피인용 문헌
- Modified couple stress theory and finite strain assumption for nonlinear free vibration and bending of micro/nanolaminated composite Euler–Bernoulli beam under thermal loading vol.231, pp.21, 2017, https://doi.org/10.1177/0954406216656884
- A Review on Vibration-Based Condition Monitoring of Rotating Machinery vol.12, pp.3, 2016, https://doi.org/10.3390/app12030972