DOI QR코드

DOI QR Code

N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

  • Sharif, Syeda Ridita (Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine) ;
  • Islam, Md. Ariful (Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine) ;
  • Moon, Il Soo (Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine)
  • Received : 2016.05.03
  • Accepted : 2016.08.09
  • Published : 2016.09.30

Abstract

N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.

Keywords

References

  1. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R., and Ellenberg, J. (2002). Nuclear envelope breakdown proceeds by microtubuleinduced tearing of the lamina. Cell 108, 83-96. https://doi.org/10.1016/S0092-8674(01)00627-4
  2. Bolhy, S., Bouhlel, I., Dultz, E., Nayak, T., Zuccolo, M., Gatti, X., Vallee, R., Ellenberg, J., and Doye, V. (2011). A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J. Cell Biol. 192, 855-871. https://doi.org/10.1083/jcb.201007118
  3. Cockell, M.M., Baumer, K., and Gonczy, P. (2004). Lis-1 is required for dynein-dependent cell division processes in C. elegans embryos. J. Cell Sci. 117, 4571-4582. https://doi.org/10.1242/jcs.01344
  4. Coquelle, F.M., Caspi, M., Cordelieres, F.P., Dompierre, J.P., Dujardin, D.L., Koifman, C., Martin, P., Hoogenraad, C.C., Akhmanova, A., Galjart, N., et al. (2002). LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089-3102. https://doi.org/10.1128/MCB.22.9.3089-3102.2002
  5. Datta, A. (1970). Studies on hog spleen N-acetylglucosamine kinase. I. Purification and properties of N-acetylglucosamine kinase. Biochim. Biophys. Acta 220, 51-60. https://doi.org/10.1016/0005-2744(70)90228-7
  6. Dujardin, D.L., and Vallee, R.B. (2002). Dynein at the cortex. Curr. Opin. Cell Biol. 14, 44-49. https://doi.org/10.1016/S0955-0674(01)00292-7
  7. Egan, M.J., Tan, K., and Reck-Peterson, S.L. (2012). Lis1 is an initiation factor for dynein-driven organelle transport. J. Cell Biol. 197, 971-982. https://doi.org/10.1083/jcb.201112101
  8. Esko, J.D., and Lindahl, U. (2001). Molecular diversity of heparin sulfate. J. Clin. Invest. 108, 169-173. https://doi.org/10.1172/JCI200113530
  9. Fant, X., Merdes, A., and Haren, L. (2004). Cell and molecular biology of spindle poles and NuMA. Int. Rev. Cytol. 238, 1-57. https://doi.org/10.1016/S0074-7696(04)38001-0
  10. Gassmann, R., Essex, A., Hu, J.S., Maddox, P.S., Motegi, F., Sugimoto, A., O'Rourke, S.M., Bowerman, B., McLeod, I., Yates, J.R. III., et al. (2008). A new mechanism controlling kinetochoremicrotubule interactions revealed by comparison of two dyneintargeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22, 2385-2399. https://doi.org/10.1101/gad.1687508
  11. Gassmann, R., Holland, A.J., Varma, D., Wan, X., Civril, F., Cleveland, D.W., Oegema, K., Salmon, E.D., and Desai, A. (2010). Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 2, 957-971.
  12. Georgatos, S.D., Pyrpasopoulou, A., and Theodoropoulos, P.A. (1997). Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule-drive deformation of the nuclear membrane. J. Cell Sci. 110, 2129-2140.
  13. Griffis, E.R., Stuurman, N., and Vale, R.D. (2007). Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177, 1005-1015. https://doi.org/10.1083/jcb.200702062
  14. Hakomori, S. ( 2000). Traveling for the glycosphingolipid path. Glycoconj. J. 17, 627-647. https://doi.org/10.1023/A:1011086929064
  15. Hebbar, S., Mesngon, M.T., Guillotte, A.M., Desai, B., Ayala. R., and Smith, D.S. (2008). Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J. Cell Biol. 182, 1063-1071. https://doi.org/10.1083/jcb.200803071
  16. Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K., and Reutter, W. (2000). Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301-3308. https://doi.org/10.1046/j.1432-1327.2000.01360.x
  17. Howell, B.J., McEwen, B.F., Canman, J.C., Hoffman, D.B., Farrar, E.M., Rieder, C.L., and Salmon, E.D. (2001). Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159-1172. https://doi.org/10.1083/jcb.200105093
  18. Hu, D.J.-K., Baffet, A.D., Nayak, T., Akhmanova, A., Doye, V., and Vallee, R.B. (2013). Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 154, 1300-1313. https://doi.org/10.1016/j.cell.2013.08.024
  19. Hurley, J.H. (1996). The sugar kinase/heat shock protein 70/actin superfamily: implications of conserved structure for mechanism. Annu. Rev. Biophys. Biomol. Struct. 25, 137-162. https://doi.org/10.1146/annurev.bb.25.060196.001033
  20. Islam, M.A., Sharif, S.R., Lee, H.S., Seog, D.H., and Moon, I.S. (2015a). N-acetyl-D-glucosamine kinase interacts with dynein light chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp. Mol. Med. 47, e177. https://doi.org/10.1038/emm.2015.48
  21. Islam, M.A., Sharif, S.R., Lee, H.S., and Moon, I.S. (2015b). Nacetyl-D-glucosamine kinase promotes the axonal growth of developing neurons. Mol. Cells 38, 876-885. https://doi.org/10.14348/molcells.2015.0120
  22. Karess, R. (2005). Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 15, 386-392. https://doi.org/10.1016/j.tcb.2005.05.003
  23. Kiyomitsu, T., and Cheeseman, I.M. (2012). Chromosome- and spindle-pole derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14, 311-317. https://doi.org/10.1038/ncb2440
  24. Lee, H.S., Cho, S.J., and Moon, I.S. (2014a). The non-canonical effect of N-acetyl-D-glucosamine kinase on the formation of neuronal dendrites. Mol. Cells 37, 248-256. https://doi.org/10.14348/molcells.2014.2354
  25. Lee, H.S., Dutta, S., and Moon, I.S. (2014b). Upregulation of dendritic arborization by N-acetyl-D-glucosamine kinase is not dependent on its kinase activity. Mol. Cells 37, 322-329. https://doi.org/10.14348/molcells.2014.2377
  26. Liang, Y., Yu, W., Li, Y., Yu, L., Zhang, Q., Wang, F., Yang, Z., Du, J., Huang, Q., Yao, X., et al. (2007). Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol. Biol. Cell 18, 2656-2666. https://doi.org/10.1091/mbc.E06-04-0345
  27. Ligos, J.M., de Lera, T.L., Hinderlich, S., Guinea, B., Sanchez, L., Roca, R., Valencia, A., and Bernad, A. (2002). Functional interaction between the Ser/Thr kinase PKL12 and Nacetylglucosamine kinase, a prominent enzyme implicated in the salvage pathway for GlcNAc recycling. J. Biol. Chem. 277, 6333-6343. https://doi.org/10.1074/jbc.M105766200
  28. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Overview of the Cell Cycle and Its Control. In Molecular Cell Biology, 4th eds. (New York: W. H. Freeman), Section 13.1.
  29. Markus, S.M., and Lee, W.L. (2011). Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation. Bioarchitecture 1, 209-215. https://doi.org/10.4161/bioa.18103
  30. Meraldi, P., McAinsh, A.D., Rheinbay, E., and Sorger, P.K. (2006). Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R 23. https://doi.org/10.1186/gb-2006-7-3-r23
  31. Mesngon, M.T., Tarricone, C., Hebbar, S., Guillotte, A.M., Schmitt, E.W., Lanier, L., Musacchio, A., King, S.J., and Smith, D.S. (2006). Regulation of cytoplasmic dynein ATPase by Lis1. J. Neurosci. 26, 2132-2139. https://doi.org/10.1523/JNEUROSCI.5095-05.2006
  32. Moon, I.S., Cho, S.J., Jin, I., and Walikonis, R. (2007). A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
  33. Moon, H.M., Youn, Y.H., Pemble, H., Yingling, J., Wittmann, T., and Wynshaw-Boris, A. (2014). LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex. Hum. Mol. Genet. 23, 449-466. https://doi.org/10.1093/hmg/ddt436
  34. Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379-393.
  35. Ori-McKenney, K.M., Jan, L.Y., and Jan, Y.N. (2012). Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76, 921-930. https://doi.org/10.1016/j.neuron.2012.10.008
  36. Pfarr, C.M., Coue, M., Grissom, P.M., Hays, T.S., Porter, M.E., and McIntosh, J.R. (1990). Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263-265. https://doi.org/10.1038/345263a0
  37. Raaijmakers, J.A., and Medema, R.H. (2014). Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 123, 407-422. https://doi.org/10.1007/s00412-014-0468-7
  38. Raaijmakers, J.A., van Heesbeen, R.G., Meaders, J.L. Geers, E.F., Fernandez-Garcia, B., Medema, R.H., and Tanenbaum, M.E. (2012). Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 31, 4179-4190. https://doi.org/10.1038/emboj.2012.272
  39. Raaijmakers, J.A., Tanenbaum, M.E., and Medema, R.H. (2013). Systematic dissection of dynein regulators in mitosis. J. Cell Biol. 201, 201-215. https://doi.org/10.1083/jcb.201208098
  40. Salina, D., Bodoor, K., Eckley, D.M., Schroer, T.A., Rattner, J.B., and Burke, B. (2002). Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97-107. https://doi.org/10.1016/S0092-8674(01)00628-6
  41. Schachter, H. (2000). The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj. J. 17, 465-483. https://doi.org/10.1023/A:1011010206774
  42. Sharif, S.R., Lee, H.S., Islam, M.A., Seog, D.H., and Moon, I.S. (2015). N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol. Cells 38, 402-408. https://doi.org/10.14348/molcells.2015.2242
  43. Sharp, D.J., Rogers, G.C., and Scholey, J.M. (2000). Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2, 922-930. https://doi.org/10.1038/35046574
  44. Shu, T., Ayala, R., Nguyen, M.D., Xie, Z., Gleeson, J.G., and Tsai, L.H. (2004). Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263-277. https://doi.org/10.1016/j.neuron.2004.09.030
  45. Smith, D.S., Niethammer, M., Ayala, R., Zhou, Y., Gambello, M.J., Wynshaw-Boris, A., and. Tsai, L.H. (2000). Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767-775. https://doi.org/10.1038/35041000
  46. Splinter, D., Tanenbaum, M.E., Lindqvist, A., Jaarsma, D., Flotho, A., Yu, K.L., Grigoriev, I., Engelsma, D., Haasdijk, E.D., Keijzer, N., et al. (2010). Bicaudal D2, dynein and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8, e1000350. https://doi.org/10.1371/journal.pbio.1000350
  47. Splinter, D., Razafsky, D.S., Schlager, M.A., Serra-Marques, A., Grigoriev, I., Demmers, J., Keijzer, N., Jiang, K., Poser, I., Hyman, A.A., et al. (2012). BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol. Biol. Cell 23, 4226-4241. https://doi.org/10.1091/mbc.E12-03-0210
  48. Starr, D.A., Williams, B.C., Hays, T.S., and Goldberg, M.L. (1998). ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763-774. https://doi.org/10.1083/jcb.142.3.763
  49. Stehman, S.A., Chen, Y., McKenney, R.J., and Vallee, R.B. (2007). NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J. Cell Biol. 178, 583-594. https://doi.org/10.1083/jcb.200610112
  50. Steuer, E.R., Wordeman, L., Schroer, T.A., and Sheetz, M.P. (1990). Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266-268. https://doi.org/10.1038/345266a0
  51. Tanenbaum, M.E., Macurek, L., Galjart, N., and Medema, R.H. (2008). Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J. 27, 3235-3245. https://doi.org/10.1038/emboj.2008.242
  52. Tanenbaum, M.E., Akhmanova, A., and Medema, R.H. (2010). Dynein at the nuclear envelope. EMBO Rep. 11, 649. https://doi.org/10.1038/embor.2010.127
  53. Van den Steen, P., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33, 151-208. https://doi.org/10.1080/10409239891204198
  54. Vergnolle, M.A., and Taylor, S.S. (2007). Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr. Biol. 17, 1173-1179. https://doi.org/10.1016/j.cub.2007.05.077
  55. Varma, D., Monzo, P., Stehman, S.A., and Vallee, R.B. (2008). Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. J. Cell Biol. 182, 1045-1054. https://doi.org/10.1083/jcb.200710106
  56. Waterman-Storer, C.M., Karki, S., and Holzbaur, E.L. (1995) The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl. Acad. Sci. USA 92, 1634-1638. https://doi.org/10.1073/pnas.92.5.1634
  57. Whyte, J., Bader, J.R., Tauhata, S.B., Raycroft, M., Hornick, J., Pfister, K.K., Lane, W.S., Chan, G.K., Hinchcliffe, E.H., Vaughan, P.S., et al. (2008). Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J. Cell Biol. 183, 819-834. https://doi.org/10.1083/jcb.200804114
  58. Yan, X., Li, F., Liang, Y., Shen, Y., Zhao, X., Huang, Q., and Zhu, X. (2003). Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol. Cell. Biol. 23, 1239-1250. https://doi.org/10.1128/MCB.23.4.1239-1250.2003

Cited by

  1. Proteomic Analysis of the Neurotrophic Effect of Gelidium amansii in Primary Cultured Neurons vol.20, pp.3, 2017, https://doi.org/10.1089/jmf.2016.3848
  2. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons vol.209, 2017, https://doi.org/10.1016/j.jep.2017.07.030
  3. Larvae Extract vol.46, pp.03, 2018, https://doi.org/10.1142/S0192415X18500337
  4. Serine/Threonine Protein Kinase STK16 vol.20, pp.7, 2016, https://doi.org/10.3390/ijms20071760
  5. N- acetyl- D -glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance vol.11, pp.8, 2020, https://doi.org/10.1038/s41419-020-02862-7
  6. N -Acetyl- D -Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010129
  7. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function vol.22, pp.15, 2016, https://doi.org/10.3390/ijms22158048