References
- Beaudouin, J., Gerlich, D., Daigle, N., Eils, R., and Ellenberg, J. (2002). Nuclear envelope breakdown proceeds by microtubuleinduced tearing of the lamina. Cell 108, 83-96. https://doi.org/10.1016/S0092-8674(01)00627-4
- Bolhy, S., Bouhlel, I., Dultz, E., Nayak, T., Zuccolo, M., Gatti, X., Vallee, R., Ellenberg, J., and Doye, V. (2011). A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J. Cell Biol. 192, 855-871. https://doi.org/10.1083/jcb.201007118
- Cockell, M.M., Baumer, K., and Gonczy, P. (2004). Lis-1 is required for dynein-dependent cell division processes in C. elegans embryos. J. Cell Sci. 117, 4571-4582. https://doi.org/10.1242/jcs.01344
- Coquelle, F.M., Caspi, M., Cordelieres, F.P., Dompierre, J.P., Dujardin, D.L., Koifman, C., Martin, P., Hoogenraad, C.C., Akhmanova, A., Galjart, N., et al. (2002). LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089-3102. https://doi.org/10.1128/MCB.22.9.3089-3102.2002
- Datta, A. (1970). Studies on hog spleen N-acetylglucosamine kinase. I. Purification and properties of N-acetylglucosamine kinase. Biochim. Biophys. Acta 220, 51-60. https://doi.org/10.1016/0005-2744(70)90228-7
- Dujardin, D.L., and Vallee, R.B. (2002). Dynein at the cortex. Curr. Opin. Cell Biol. 14, 44-49. https://doi.org/10.1016/S0955-0674(01)00292-7
- Egan, M.J., Tan, K., and Reck-Peterson, S.L. (2012). Lis1 is an initiation factor for dynein-driven organelle transport. J. Cell Biol. 197, 971-982. https://doi.org/10.1083/jcb.201112101
- Esko, J.D., and Lindahl, U. (2001). Molecular diversity of heparin sulfate. J. Clin. Invest. 108, 169-173. https://doi.org/10.1172/JCI200113530
- Fant, X., Merdes, A., and Haren, L. (2004). Cell and molecular biology of spindle poles and NuMA. Int. Rev. Cytol. 238, 1-57. https://doi.org/10.1016/S0074-7696(04)38001-0
- Gassmann, R., Essex, A., Hu, J.S., Maddox, P.S., Motegi, F., Sugimoto, A., O'Rourke, S.M., Bowerman, B., McLeod, I., Yates, J.R. III., et al. (2008). A new mechanism controlling kinetochoremicrotubule interactions revealed by comparison of two dyneintargeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22, 2385-2399. https://doi.org/10.1101/gad.1687508
- Gassmann, R., Holland, A.J., Varma, D., Wan, X., Civril, F., Cleveland, D.W., Oegema, K., Salmon, E.D., and Desai, A. (2010). Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 2, 957-971.
- Georgatos, S.D., Pyrpasopoulou, A., and Theodoropoulos, P.A. (1997). Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule-drive deformation of the nuclear membrane. J. Cell Sci. 110, 2129-2140.
- Griffis, E.R., Stuurman, N., and Vale, R.D. (2007). Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177, 1005-1015. https://doi.org/10.1083/jcb.200702062
- Hakomori, S. ( 2000). Traveling for the glycosphingolipid path. Glycoconj. J. 17, 627-647. https://doi.org/10.1023/A:1011086929064
- Hebbar, S., Mesngon, M.T., Guillotte, A.M., Desai, B., Ayala. R., and Smith, D.S. (2008). Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J. Cell Biol. 182, 1063-1071. https://doi.org/10.1083/jcb.200803071
- Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K., and Reutter, W. (2000). Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301-3308. https://doi.org/10.1046/j.1432-1327.2000.01360.x
- Howell, B.J., McEwen, B.F., Canman, J.C., Hoffman, D.B., Farrar, E.M., Rieder, C.L., and Salmon, E.D. (2001). Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159-1172. https://doi.org/10.1083/jcb.200105093
- Hu, D.J.-K., Baffet, A.D., Nayak, T., Akhmanova, A., Doye, V., and Vallee, R.B. (2013). Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 154, 1300-1313. https://doi.org/10.1016/j.cell.2013.08.024
- Hurley, J.H. (1996). The sugar kinase/heat shock protein 70/actin superfamily: implications of conserved structure for mechanism. Annu. Rev. Biophys. Biomol. Struct. 25, 137-162. https://doi.org/10.1146/annurev.bb.25.060196.001033
- Islam, M.A., Sharif, S.R., Lee, H.S., Seog, D.H., and Moon, I.S. (2015a). N-acetyl-D-glucosamine kinase interacts with dynein light chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp. Mol. Med. 47, e177. https://doi.org/10.1038/emm.2015.48
- Islam, M.A., Sharif, S.R., Lee, H.S., and Moon, I.S. (2015b). Nacetyl-D-glucosamine kinase promotes the axonal growth of developing neurons. Mol. Cells 38, 876-885. https://doi.org/10.14348/molcells.2015.0120
- Karess, R. (2005). Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 15, 386-392. https://doi.org/10.1016/j.tcb.2005.05.003
- Kiyomitsu, T., and Cheeseman, I.M. (2012). Chromosome- and spindle-pole derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14, 311-317. https://doi.org/10.1038/ncb2440
- Lee, H.S., Cho, S.J., and Moon, I.S. (2014a). The non-canonical effect of N-acetyl-D-glucosamine kinase on the formation of neuronal dendrites. Mol. Cells 37, 248-256. https://doi.org/10.14348/molcells.2014.2354
- Lee, H.S., Dutta, S., and Moon, I.S. (2014b). Upregulation of dendritic arborization by N-acetyl-D-glucosamine kinase is not dependent on its kinase activity. Mol. Cells 37, 322-329. https://doi.org/10.14348/molcells.2014.2377
- Liang, Y., Yu, W., Li, Y., Yu, L., Zhang, Q., Wang, F., Yang, Z., Du, J., Huang, Q., Yao, X., et al. (2007). Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol. Biol. Cell 18, 2656-2666. https://doi.org/10.1091/mbc.E06-04-0345
- Ligos, J.M., de Lera, T.L., Hinderlich, S., Guinea, B., Sanchez, L., Roca, R., Valencia, A., and Bernad, A. (2002). Functional interaction between the Ser/Thr kinase PKL12 and Nacetylglucosamine kinase, a prominent enzyme implicated in the salvage pathway for GlcNAc recycling. J. Biol. Chem. 277, 6333-6343. https://doi.org/10.1074/jbc.M105766200
- Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Overview of the Cell Cycle and Its Control. In Molecular Cell Biology, 4th eds. (New York: W. H. Freeman), Section 13.1.
- Markus, S.M., and Lee, W.L. (2011). Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation. Bioarchitecture 1, 209-215. https://doi.org/10.4161/bioa.18103
- Meraldi, P., McAinsh, A.D., Rheinbay, E., and Sorger, P.K. (2006). Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R 23. https://doi.org/10.1186/gb-2006-7-3-r23
- Mesngon, M.T., Tarricone, C., Hebbar, S., Guillotte, A.M., Schmitt, E.W., Lanier, L., Musacchio, A., King, S.J., and Smith, D.S. (2006). Regulation of cytoplasmic dynein ATPase by Lis1. J. Neurosci. 26, 2132-2139. https://doi.org/10.1523/JNEUROSCI.5095-05.2006
- Moon, I.S., Cho, S.J., Jin, I., and Walikonis, R. (2007). A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
- Moon, H.M., Youn, Y.H., Pemble, H., Yingling, J., Wittmann, T., and Wynshaw-Boris, A. (2014). LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex. Hum. Mol. Genet. 23, 449-466. https://doi.org/10.1093/hmg/ddt436
- Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379-393.
- Ori-McKenney, K.M., Jan, L.Y., and Jan, Y.N. (2012). Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76, 921-930. https://doi.org/10.1016/j.neuron.2012.10.008
- Pfarr, C.M., Coue, M., Grissom, P.M., Hays, T.S., Porter, M.E., and McIntosh, J.R. (1990). Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263-265. https://doi.org/10.1038/345263a0
- Raaijmakers, J.A., and Medema, R.H. (2014). Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 123, 407-422. https://doi.org/10.1007/s00412-014-0468-7
- Raaijmakers, J.A., van Heesbeen, R.G., Meaders, J.L. Geers, E.F., Fernandez-Garcia, B., Medema, R.H., and Tanenbaum, M.E. (2012). Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 31, 4179-4190. https://doi.org/10.1038/emboj.2012.272
- Raaijmakers, J.A., Tanenbaum, M.E., and Medema, R.H. (2013). Systematic dissection of dynein regulators in mitosis. J. Cell Biol. 201, 201-215. https://doi.org/10.1083/jcb.201208098
- Salina, D., Bodoor, K., Eckley, D.M., Schroer, T.A., Rattner, J.B., and Burke, B. (2002). Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97-107. https://doi.org/10.1016/S0092-8674(01)00628-6
- Schachter, H. (2000). The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj. J. 17, 465-483. https://doi.org/10.1023/A:1011010206774
- Sharif, S.R., Lee, H.S., Islam, M.A., Seog, D.H., and Moon, I.S. (2015). N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol. Cells 38, 402-408. https://doi.org/10.14348/molcells.2015.2242
- Sharp, D.J., Rogers, G.C., and Scholey, J.M. (2000). Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2, 922-930. https://doi.org/10.1038/35046574
- Shu, T., Ayala, R., Nguyen, M.D., Xie, Z., Gleeson, J.G., and Tsai, L.H. (2004). Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263-277. https://doi.org/10.1016/j.neuron.2004.09.030
- Smith, D.S., Niethammer, M., Ayala, R., Zhou, Y., Gambello, M.J., Wynshaw-Boris, A., and. Tsai, L.H. (2000). Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767-775. https://doi.org/10.1038/35041000
- Splinter, D., Tanenbaum, M.E., Lindqvist, A., Jaarsma, D., Flotho, A., Yu, K.L., Grigoriev, I., Engelsma, D., Haasdijk, E.D., Keijzer, N., et al. (2010). Bicaudal D2, dynein and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8, e1000350. https://doi.org/10.1371/journal.pbio.1000350
- Splinter, D., Razafsky, D.S., Schlager, M.A., Serra-Marques, A., Grigoriev, I., Demmers, J., Keijzer, N., Jiang, K., Poser, I., Hyman, A.A., et al. (2012). BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol. Biol. Cell 23, 4226-4241. https://doi.org/10.1091/mbc.E12-03-0210
- Starr, D.A., Williams, B.C., Hays, T.S., and Goldberg, M.L. (1998). ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763-774. https://doi.org/10.1083/jcb.142.3.763
- Stehman, S.A., Chen, Y., McKenney, R.J., and Vallee, R.B. (2007). NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J. Cell Biol. 178, 583-594. https://doi.org/10.1083/jcb.200610112
- Steuer, E.R., Wordeman, L., Schroer, T.A., and Sheetz, M.P. (1990). Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266-268. https://doi.org/10.1038/345266a0
- Tanenbaum, M.E., Macurek, L., Galjart, N., and Medema, R.H. (2008). Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J. 27, 3235-3245. https://doi.org/10.1038/emboj.2008.242
- Tanenbaum, M.E., Akhmanova, A., and Medema, R.H. (2010). Dynein at the nuclear envelope. EMBO Rep. 11, 649. https://doi.org/10.1038/embor.2010.127
- Van den Steen, P., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33, 151-208. https://doi.org/10.1080/10409239891204198
- Vergnolle, M.A., and Taylor, S.S. (2007). Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr. Biol. 17, 1173-1179. https://doi.org/10.1016/j.cub.2007.05.077
- Varma, D., Monzo, P., Stehman, S.A., and Vallee, R.B. (2008). Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. J. Cell Biol. 182, 1045-1054. https://doi.org/10.1083/jcb.200710106
- Waterman-Storer, C.M., Karki, S., and Holzbaur, E.L. (1995) The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl. Acad. Sci. USA 92, 1634-1638. https://doi.org/10.1073/pnas.92.5.1634
- Whyte, J., Bader, J.R., Tauhata, S.B., Raycroft, M., Hornick, J., Pfister, K.K., Lane, W.S., Chan, G.K., Hinchcliffe, E.H., Vaughan, P.S., et al. (2008). Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J. Cell Biol. 183, 819-834. https://doi.org/10.1083/jcb.200804114
- Yan, X., Li, F., Liang, Y., Shen, Y., Zhao, X., Huang, Q., and Zhu, X. (2003). Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol. Cell. Biol. 23, 1239-1250. https://doi.org/10.1128/MCB.23.4.1239-1250.2003
Cited by
- Proteomic Analysis of the Neurotrophic Effect of Gelidium amansii in Primary Cultured Neurons vol.20, pp.3, 2017, https://doi.org/10.1089/jmf.2016.3848
- Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons vol.209, 2017, https://doi.org/10.1016/j.jep.2017.07.030
- Larvae Extract vol.46, pp.03, 2018, https://doi.org/10.1142/S0192415X18500337
- Serine/Threonine Protein Kinase STK16 vol.20, pp.7, 2016, https://doi.org/10.3390/ijms20071760
- N- acetyl- D -glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance vol.11, pp.8, 2020, https://doi.org/10.1038/s41419-020-02862-7
- N -Acetyl- D -Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010129
- Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function vol.22, pp.15, 2016, https://doi.org/10.3390/ijms22158048