DOI QR코드

DOI QR Code

탄소나노튜브를 활용한 나노 통신 시스템 연구

Nano Communication Systems Using Carbon Nanotube

  • 권태수 (서울과학기술대학교 컴퓨터공학과) ;
  • 황경호 (한밭대학교 컴퓨터공학과)
  • 투고 : 2016.08.29
  • 심사 : 2016.09.24
  • 발행 : 2016.09.30

초록

나노 통신 시스템 기술은 통신기술과 나노기술의 융합 분야로서 밀리미터 수준의 통신 모듈 크기에 머물고 있는 현 기술수준을 뛰어넘어 수백 나노미터에서 수십 마이크로미터 이하 단위의 극소형 무선통신 시스템 구현을 가능케 하는 미래 핵심 기술 분야이다. 특히, 최근 제안된 탄소나노튜브의 전기적/기계적 속성을 활용한 신규 극소형 나노 무선 통신시스템 기술은 기존 송수신 구조를 단순히 소형화하는 것이 아니라 구조 자체를 바꾸는 새로운 접근 방식을 제시하고 있다. 따라서, 본 논문에서는 탄소나노튜브(carbon nanotube, CNT)를 활용한 극소형 나노 무선 송수신기 실현 관점에서의 연구현황을 살펴보고 나노 기술과 통신 기술의 융합을 위한 주요 핵심 연구이슈를 제시한다.

Nano communication system technologies are future core technologies that facilitate the implementation of tiny wireless communication systems with sizes in the range of hundreds of nanometers to tens of micrometers, which cannot be implemented by current wireless communication system technologies. In particular, novel nano communication system technology, which is based on electrical and mechanical resonance characteristics of carbon nanotube(: CNT), does not simply miniaturize system modules, but suggests a new approach that changes system architectures. Therefore, this paper surveys the state of the art on CNT-based nano communication technologies in aspects of system implementation, and proposes important research issues for convergence of nano and communication technologies.

키워드

참고문헌

  1. I. Fkyildiz and J. Jornet, "Electromagnetic Wireless Nanosensor Networks," Nano Communication Networks (Elsevier), vol. 1, no. 1, Mar. 2010, pp. 3-19. https://doi.org/10.1016/j.nancom.2010.04.001
  2. I. Akyildiz. and J. Jornet, "The Internet of Nano-Things," IEEE Wireless Communications Mag., vol. 17, no. 6, Dec. 2010, pp. 58-63. https://doi.org/10.1109/MWC.2010.5675779
  3. P. Burke and C. Rutherglen, "Towards a single-chip, implantable RFID system: is a single-cell radio possible?" Biomed Microdevices. vol. 12, no. 4, Aug. 2010, pp. 589-596. https://doi.org/10.1007/s10544-008-9266-4
  4. K. Jensen, J. Weldon, H. Garcia, and A. Zettl, "Nanotube Radio," Nano Letters, vol 7, no. 11, Oct. 2007, pp. 3508-3511. https://doi.org/10.1021/nl0721113
  5. C. Rutherglen and P. Burke, "Carbon Nanotube Radio," Nano Letters, vol. 7, no. 11, Oct. 2007, pp. 3296-3299. https://doi.org/10.1021/nl0714839
  6. M. Usami, H. Tanabe, A. Sato, I. Sakama, Y. Maki, T. Iwamatsu, T. Iposhi, and Y. Inoue "A $0.05{\time}0.05$ mm2 RFID Chip with Easily Scaled-Down ID-Memory," IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, USA, Feb. 2007.
  7. D. Shi, "A Fully Integrated CMOS Receiver," Ph.D's Thesis, The University of Michigan, 2008.
  8. N. Mathur, "Beyond the silicon road map", Nature, vol. 419, Oct. 2002, pp. 573-575. https://doi.org/10.1038/419573a
  9. P. J. Burke, S. Li, and Z. Yu "Quantitative theory of nanowire and nanotube antenna performance," IEEE Trans. Nanotechnology, vol. 5, no. 4, July 2006, pp. 314-334. https://doi.org/10.1109/TNANO.2006.877430
  10. J. Jornet and I. Akyildiz, "Graphene-based Nano-antennas for Electromagnetic Nanocommunications in the Terahertz Band," In Proc. of European Conf. on Antennas and Propagation(EUCAP) 2010, Barcelona, Spain, Apr. 2010.
  11. W. Heer, A. Chatelain, and D. Ugarte, "Carbon Nanotube Field Emission Electron Source," Science, vol. 270, no. 5239, Nov. 1995, pp. 1179-1180. https://doi.org/10.1126/science.270.5239.1179
  12. P. Poncharal, Z. Wang, D. Ugarte, and W. Heer, "Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes," Science, vol. 283, no. 5407, Mar. 1999, pp. 1513-1516. https://doi.org/10.1126/science.283.5407.1513
  13. D. Dragoman and M. Dragoman, "Tunneling Nanotube Radio," J. of Applied Physics, vol. 104, no. 7, Oct. 2008, pp. 074314. https://doi.org/10.1063/1.2991153
  14. J. Weldon, K. Jensenl, and A. Zettl, "Nanomechanical radio transmitter," Physical Status Solidi, vol. 245, no. 10, Oct. 2008, pp. 2323-2325. https://doi.org/10.1002/pssb.200879639
  15. J. Weldon, B. Aleman, A. Sussman, W. Gannett, and A. Zettl, "Sustained Mechanical Self-Osciilations in Carbon Nanotubes," Nano Letters, vol. 10, no. 5, Apr. 2010, pp. 1728-1733. https://doi.org/10.1021/nl100148q
  16. C. Koksal and E. Ekici, "A Nanoradio Architecture for Interacting Nanonetworking Tasks," Nano Communication Networks(Elsevier) J., vol. 1, no. 1, Mar. 2010, pp. 63-75. https://doi.org/10.1016/j.nancom.2010.03.001
  17. C. E. Koksal, E. Ekici, and S. Rajan, "Design and Analysis of Systems Based on RF Receivers with Multiple Carbon Nanotube Antennas," Nano Communication Networks(Elsevier) J., vol. 1, no. 3, Sept. 2010, pp 160-172. https://doi.org/10.1016/j.nancom.2010.09.001
  18. B. Atakan and O. Akan, "Carbon Nanotube-Based Nanoscale Ad Hoc Networks," IEEE Communications Mag., vol. 48, no. 6, June 2010, pp. 129-135. https://doi.org/10.1109/MCOM.2010.5473874
  19. J. She and J. Yeow, "Nanotechnoogy-Enabled Wireless Sensor Networks: From a Device Perspective," IEEE Sensors J., vol. 6, no. 5, Oct. 2006, pp. 1331-1339. https://doi.org/10.1109/JSEN.2006.881362
  20. B. Atakan and O. Akan, "Carbon Nanotube Sensor Networks," Proc. IEEE NanoCom'09, San Francisco, USA, Aug. 2009.
  21. S. Santra, S. Ali, P. Guha, G. Zhong, J. Robertson, J. Covington, W. Milne, J. Gardner, and F. Udrea, "Post-CMOS Wafer Level Growth of Carbon Nanotubes for Low-Cost Microsensors - a Proof of Concept," Nanotechnology, vol. 21, no. 48, Nov. 2010, pp. 485301. https://doi.org/10.1088/0957-4484/21/48/485301
  22. M. Dragoman, D. Neculoiu, A. Cismaru, D. Dragoman, K. Grenier, S. Pacchini, L. Mazenq, and R. Plana, "High quality nanoelectromechanical microwave resonator based on a carbon nanotube array" Applied Physics Letters, vol. 92, Feb. 2008, pp. 063118. https://doi.org/10.1063/1.2857541