DOI QR코드

DOI QR Code

The Creation of a Strong Magnetic Field by Means of Large Magnetic Blocks from NdFeB Magnets in Opposing Linear Halbach Arrays

  • Zezulka, Vaclav (Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic) ;
  • Straka, Pavel (Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic)
  • Received : 2016.02.12
  • Accepted : 2016.07.20
  • Published : 2016.09.30

Abstract

The article presents the results and findings obtained through the assembly of opposing linear Halbach arrays from two magnet layers using large magnetic blocks from permanent NdFeB magnets, especially concerning the distribution of magnetic induction in an air gap. The use of these large blocks has led to a significant expansion of the area of magnetic field with a substantially higher value of magnetic induction in comparison with similar linear Halbach arrays composed of small magnets. The paper also discusses the determined dependences of magnetic induction on the parameters of the x, y, z coordinate system and indicates the possibilities of achieving an even stronger magnetic field in a larger volume of an air gap for application for instance in equipment for magnetic separation of raw materials, in instrument technologies and in other areas.

Keywords

References

  1. Z. Wang, W. H. Yang, X. B. Zhang, L. L. Hu, and H. X. Wang, IEEE Trans. Appl. Supercond. 20, 3 (2010). https://doi.org/10.1109/TASC.2010.2077412
  2. F. Bloch, O. Cugat, G. Meunier, and J. C. Toussaint, IEEE Trans. Magn. 34, 5 (1998).
  3. Ch. Li and M. Devine, IEEE Trans. Magn. 41, 10 (2005).
  4. R. Bjork, C. R. H. Bahl, A. Smith, and N. Pryds, IEEE Trans. Magn. 47, 6 (2011). https://doi.org/10.1109/TMAG.2010.2076798
  5. V. Zezulka and P. Straka, IEEE Trans. Magn. 44, 4 (2008). https://doi.org/10.1109/TMAG.2008.2006161
  6. N. Dogan, R. Topkaya, H. Subasi, Y. Yerli, and B. Rameev, J. of Physics D, Conference Series 153, 1 (2009).
  7. V. C. Barroso, H. Raich, P. Blumler, and M. Wilhelm, J.of Physics D, Conference Series 149, 1 (2009).
  8. J. E. Hilton and S. M. McMurry, J. Magn. Magn. Mater. 324, 2051 (2012). https://doi.org/10.1016/j.jmmm.2012.02.014
  9. A. Sarwar, A. Nemirovski, and B. Shapiro, J. Magn. Magn. Mater. 324, 742 (2012). https://doi.org/10.1016/j.jmmm.2011.09.008
  10. J. Choi and J. Yoo, IEEE Trans. Magn. 44, 10 (2008).
  11. R. Bjork, C. R. H. Bahl, A. Smith, and N. Pryds, J. Magn. Magn. Mater. 322, 3664 (2010). https://doi.org/10.1016/j.jmmm.2010.07.022
  12. A. E. Marble, IEEE Trans. Magn. 44, 5 (2008).
  13. V. Zezulka, J. Pistora, M. Lesnak, P. Straka, D. Ciprian, and J. Foukal, J. Magn. Magn. Mater. 345, 7 (2013). https://doi.org/10.1016/j.jmmm.2013.05.047
  14. J. Jin, The Finite Element Method in Electromagnetics, J. Wiley & Sons Inc., New York (2002).
  15. V. Zezulka, P. Straka, and V. Soukup, US Patent No. US 7,796,001 (2010).