References
- Abdollahi, M., Saidi, A. and Mohammadi, M. (2015), "Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory", Acta Mechanica, 226(8), 1-14. https://doi.org/10.1007/s00707-014-1156-7
- Akbarov, S.D. and Yahnioglu, N. (2013a), "Buckling delamination of a sandwich plate-strip with piezoelectric face and elastic core layers", Appl. Math. Model., 37(16), 8029-8038. https://doi.org/10.1016/j.apm.2013.02.051
- Akgoz, B. and Civalek, O. (2014a), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
- Akhras, G. and Li, W. (2010a), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method", Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/j.compstruct.2009.06.010
- Batra, R. and Geng, T. (2001a), "Enhancement of the dynamic buckling load for a plate by using piezoceramic actuators", Smart Mater. Struct., 10(5), 925-933. https://doi.org/10.1088/0964-1726/10/5/309
- Bodaghi, M. and Saidi, A. (2010b), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016
- Brush, D.O. and Almroth, B. (1979), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York.
- Chandrashekhara, K. and Bhatia, K. (1993), "Active buckling control of smart composite plates-finiteelement analysis", Smart Mater. Struct., 2(1), 31-39. https://doi.org/10.1088/0964-1726/2/1/005
- Civalek, O. (2004a), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O., Korkmaz, A. and Demir, C. (2010c), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Ebrahimi, F., Rastgoo, A. and Atai, A. (2009a), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Euro. J. Mech. A/Solid., 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008
- Fereidoon, A., Yaghoobi, H. and Dehghanian, A. (2014b), "An analytical approach for buckling behavior of temperature-dependent laminated piezoelectric functionally graded plates under thermo-electromechanical loadings and different end supports", Int. J. Comput. Meth., 11(04), 1350099. https://doi.org/10.1142/S0219876213500990
- Hosseini-Hashemi, S., Khorshidi, K. and Amabili, M. (2008a), "Exact solution for linear buckling of rectangular Mindlin plates", J. Sound Vib., 315(1), 318-342. https://doi.org/10.1016/j.jsv.2008.01.059
- Jadhav, P. and Bajoria, K. (2013b), "Stability analysis of piezoelectric FGM plate subjected to electromechanical loading using finite element method", Int. J. Appl. Sci. Eng., 11(4), 375-391.
- Jalili, N. (2009b), Piezoelectric-based vibration control: from macro to micro/nano scale systems, Springer Science & Business Media.
- Javaheri, R. and Eslami, M. (2002a), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626
- Javaheri, R. and Eslami, M. (2002b), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333
- Jones, R.M. (2006a), Buckling of bars, plates, and shells, Bull Ridge Corporation.
- Kapuria, S. and Achary, G. (2006b), "Nonlinear coupled zigzag theory for buckling of hybrid piezoelectric plates", Compos. Struct., 74(3), 253-264. https://doi.org/10.1016/j.compstruct.2005.04.010
- Kim, G.W. and Lee, K.Y. (2008b), "Influence of weak interfaces on buckling of orthotropic piezoelectric rectangular laminates", Compos. Struct., 82(2), 290-294. https://doi.org/10.1016/j.compstruct.2007.01.006
- Kim, S.E., Thai, H.T. and Lee, J. (2009c), "Buckling analysis of plates using the two variable refined plate theory", Thin Wall. Struct., 47(4), 455-462. https://doi.org/10.1016/j.tws.2008.08.002
- Kuo, S.R. and Yau, J. (2012), "Buckling equations of orthotropic thin plates", J. Mech., 28(03), 555-567. https://doi.org/10.1017/jmech.2012.64
- Lanhe, W. (2004b), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004
- Mirzavand, B. and Eslami, M. (2011a), "A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties", Acta Mechanica, 218(1-2), 87-101. https://doi.org/10.1007/s00707-010-0402-x
- Mohammadi, M., Saidi, A. and Jomehzadeh, E. (2010d), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(9), 1831-1841. https://doi.org/10.1243/09544062JMES1804
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010e), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z
- Panahandeh-Shahraki, D., Mirdamadi, H.R. and Vaseghi, O. (2014c), "Fully coupled electromechanical buckling analysis of active laminated composite plates considering stored voltage in actuators", Compos. Struct., 118, 94-105. https://doi.org/10.1016/j.compstruct.2014.07.008
- Rad, A.A. and Panahandeh-Shahraki, D. (2014d), "Buckling of cracked functionally graded plates under tension", Thin Wall. Struct., 84, 26-33. https://doi.org/10.1016/j.tws.2014.05.005
- Shariat, B.S. and Eslami, M. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
- Shariyat, M. (2009d), "Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties", Compos. Struct., 88(2), 228-239. https://doi.org/10.1016/j.compstruct.2008.03.044
- Shariyat, M. (2009e), "Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions", Compos. Struct., 88(2), 240-252. https://doi.org/10.1016/j.compstruct.2008.04.003
- Shen, H.S. (2001b), "Postbuckling of shear deformable laminated plates with piezoelectric actuators under complex loading conditions", Int. J. Solid. Struct., 38(44), 7703-7721. https://doi.org/10.1016/S0020-7683(01)00120-2
- Shen, H.S. (2001c), "Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators", Compos. Sci. Tech., 61(13), 1931-1943. https://doi.org/10.1016/S0266-3538(01)00099-9
- Shen, H.S. (2005), "Postbuckling of FGM plates with piezoelectric actuators under thermo-electromechanical loadings", Int. J. Solid. Struct., 42(23), 6101-6121. https://doi.org/10.1016/j.ijsolstr.2005.03.042
- Shen, H.S. (2009f), "A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators", Compos. Struct., 91(3), 375-384. https://doi.org/10.1016/j.compstruct.2009.06.005
- Sheng, G. and Wang, X. (2010f), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model., 34(9), 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024
- Varelis, D. and Saravanos, D.A. (2004c), "Coupled buckling and postbuckling analysis of active laminated piezoelectric composite plates", Int. J. Solid. Struct., 41(5), 1519-1538. https://doi.org/10.1016/j.ijsolstr.2003.09.034
- Yang, Y. (1998), "Buckling of a piezoelectric plate", Int. J. Appl. Electromag. Mech., 9(40), 399-408.
- Yoo, C.H. and Lee, S. (2011b), Stability of structures: principles and applications, Elsevier.
Cited by
- Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure vol.5, pp.4, 2018, https://doi.org/10.1088/2053-1591/aab914
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- Thermo-electrical buckling response of actuated functionally graded piezoelectric nanoscale plates vol.13, pp.None, 2016, https://doi.org/10.1016/j.rinp.2019.102192
- A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation vol.73, pp.4, 2016, https://doi.org/10.12989/sem.2020.73.4.407
- Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory vol.7, pp.2, 2016, https://doi.org/10.12989/aas.2020.7.2.115