DOI QR코드

DOI QR Code

Polypropylene fiber reinforced concrete plates under fluid impact. Part I: experiments

  • Korucu, Hasan (Turkish Armed Forces Headquarters, Department of Engineering)
  • 투고 : 2016.03.29
  • 심사 : 2016.06.16
  • 발행 : 2016.10.25

초록

Static loading and fluid impact tests on plates containing mesh reinforcement and polypropylene fibers in ratios of 0 to 3% by volume were performed. The objective was to observe the effect of fluid mass on the total impulse that caused the impact event and the influence of fiber amount on the impact resistance, and to estimate the velocity of fluid that causes scabbing, perforation or total disintegration. The study is the first to express the fluid impact resistance of polypropylene fiber reinforced concrete plates.

키워드

과제정보

연구 과제 주관 기관 : TUBITAK (The Scientific and Technological Research Council of Turkey)

참고문헌

  1. Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 1291-1303. https://doi.org/10.12989/scs.2015.18.5.1291
  2. Badr, A., Ashour, A.F. and Platten, A.K. (2006), "Statistical variations in impact resistance of polypropylene fibre-reinforced concrete", Int. J. Impact Eng., 32(11), 1907-1920. https://doi.org/10.1016/j.ijimpeng.2005.05.003
  3. Barr, B. and Bouamrata, A. (1988), "Development of a repeated drop-weight impact testing apparatus for studying fibre reinforced concrete materials", Compos., 19(6), 453-466. https://doi.org/10.1016/0010-4361(88)90703-3
  4. BASF Chemical Company (2015), Available from: http://www.master-builders-solutions.basf.us/en/us/products/masterfiber/1651?Product= MasterFiberF70., Construction Chemicals, Beachwood, OH, USA.
  5. Cheng, X., Zhao, W., Liu, S., Xu, Y. and Bao, J. (2014), "Damage of scarf-repaired composite laminates subjected to low-velocity impacts", Steel Compos. Struct., 17(2), 199-213. https://doi.org/10.12989/scs.2014.17.2.199
  6. Dancygier, A.N. (2009), "Characteristics of high performance reinforced concrete barriers that resist nondeforming projectile impact", Struct. Eng. Mech., 32(5), 685-699. https://doi.org/10.12989/sem.2009.32.5.685
  7. Disimile, P.J., Luke, A.S. and Toy, N. (2009), "The hydrodynamic ram pressure generated by spherical projectiles", Int. J. Impact Eng., 36(6), 821-829. https://doi.org/10.1016/j.ijimpeng.2008.12.009
  8. Flightglobal (2016), Available from: https://www.flightglobal.com/pdfarchive/view/1958/1958-1-%20-%200145.html,Quadrant House, The Quadrant, Sutton SM2 5AS, UK.
  9. Irfanoglu, A. and Hoffmann, C.M. (2008), "Engineering perspective of the collapse of WTC-I", J. Perform. Constr. Fac., 22(1), 62-67. https://doi.org/10.1061/(ASCE)0887-3828(2008)22:1(62)
  10. Jankowiak, T., Rusinek, A., Kpenyigba, K.M. and Pesci, R. (2014), "Ballistic behavior of steel sheet subjected to impact and perforation", Steel Compos. Struct., 16(6), 595-609. https://doi.org/10.12989/scs.2014.16.6.595
  11. Kantar, E. and Anil, O. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230. https://doi.org/10.12989/scs.2012.12.3.207
  12. Korucu, H. (2016), "Polypropylene fiber reinforced concrete plates under high velocity fluid impact. Part II: modeling and simulation", Struct. Eng. Mech., 60(2), 225-235 https://doi.org/10.12989/sem.2016.60.2.225
  13. Korucu, H. and Gulkan, P. (2011), "High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part I: experimental investigations", Struct. Eng. Mech., 40, 595-616. https://doi.org/10.12989/sem.2011.40.5.595
  14. Manolis, G.D., Gareis, P.J., Tsonos, A.D. and Neal, J.A. (1997), "Dynamic properties of polypropylene fiber-reinforced concrete slabs", Cement Concrete Compos., 19(4), 341-349. https://doi.org/10.1016/S0958-9465(97)00030-9
  15. May, I.M., Chen, Y., Owen, D.R.J., Feng, Y.T. and Thiele, P.J. (2006), "Reinforced concrete beams under drop-weight impact loads", Comput. Concrete, 3(2), 79-90. https://doi.org/10.12989/cac.2006.3.2_3.079
  16. Mazek, S.A. and Mostafa, A.A., "Impact of composite materials on performance of reinforced concrete panels" Comput. Concrete, 14(6), 767-783. https://doi.org/10.12989/cac.2014.14.6.767
  17. Miamis, K., Irfanoglu, A. and Sozen, M.A. (2009), "Dominant factor in the collapse of WTC-I", J. Perform. Constr. Fac., 23(4), 203-208. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000014
  18. Micheli, G.B., Driemeier, L. and Alves, M. (2015), "A finite element-experimental study of the impact of spheres on aluminium thin plates", Struct. Eng. Mech., 55(2), 263-280. https://doi.org/10.12989/sem.2015.55.2.263
  19. Mindess, S. and Vondran, G. (1998), "Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading", Cement Concrete Res., 19(1), 109-115.
  20. Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A. (2005a), "September 11, 2001, airliner crash into the Pentagon", J. Perform. Constr. Fac., 19(3), 189-196. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:3(189)
  21. Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A. (2005b), "Description of structural damage caused by the terrorist attack on the Pentagon", J. Perform. Constr. Fac., 19(3), 197-205. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:3(197)
  22. Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A. (2003), "The Pentagon building performance report", ASCE Structural Engineering Institute, Reston, VA, USA.
  23. Moussa, N.A., Whale, M.D., Groszmann, D.E. and Zhang, X.J. (1997), "The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris", Final Report., Report No.: DOT/FAA/AR-96/95, Department of Transportation (US), Federal Aviation Administration, Washington D.C., USA.
  24. Nia, A.A., Hedayatian, M., Nili, M. and Sabet, V.A. (2012), "An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete", Int. J. Impact Eng., 46, 62-73. https://doi.org/10.1016/j.ijimpeng.2012.01.009
  25. Nili, M. and Afroughsabet, V. (2010), "The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete", Constr. Build. Mater., 24(6), 927-933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
  26. Nouri, M.D., Hatami, H. and Jahromi, A.G. (2015), "Experimental and numerical investigation of expanded metal tube absorber under axial impact loading", Struct. Eng. Mech., 54(6), 1245-1266. https://doi.org/10.12989/sem.2015.54.6.1245
  27. Perumal, R. (2014), "Performance and modeling of high-performance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255
  28. Pujol, S. and Brachmann, I. (2007), "Experimental and analytical study on the response of barriers to fluid impact. Technical report", Civil Engineering, Purdue University, West Lafayette, IN, USA.
  29. Rahmani, T., Kiani, B., Shekarchi, M. and Safari, A. (2012), "Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test", Constr. Build. Mater., 37, 360-369. https://doi.org/10.1016/j.conbuildmat.2012.07.068
  30. Riera, J.D. (1968), "On stress analysis of structures subjected to aircraft impact forces", Nucl. Eng. Des. 8(4), 415-426. https://doi.org/10.1016/0029-5493(68)90039-3
  31. Sauer, M. (2011), "Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics", Int. J. Impact Eng., 38(6), 511-520. https://doi.org/10.1016/j.ijimpeng.2010.10.023
  32. Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength of nylon and polypropylene fiber reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
  33. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., von Riesemann, W.A., Bickel, D.C. and Parks, M.B. (1993), "Full-scale aircraft impact test for evaluation of impact force", Nucl. Eng. Des., 140(3), 373-385. https://doi.org/10.1016/0029-5493(93)90119-T
  34. Sunder, S.S. (2005), Federal building and fire safety investigation of the World Trade Center Disaster: Final report of the National Construction Safety Team on the collapses of the World Trade Center Towers, Final report., Report No.: NIST NCSTAR 1, National Institute of Standards and Technology (NIST) Gaithersburg, MA, USA.
  35. Varas, D., Lopez-Punte, J. and Zaera, R. (2009), "Experimental analysis of fluid-filled tubes subjected to high-velocity impact", Int. J. Impact Eng., 36(1), 81-89. https://doi.org/10.1016/j.ijimpeng.2008.04.006
  36. Xue, L. and Wierzbicki, T. (2003), "High-speed impact of liquid-filled cylinders", Report No.:108, MIT, Impact and Crashworthiness Laboratory, Cambridge, MA, USA.

피인용 문헌

  1. Influence of polypropylene fibres on the shear strength of RC beams with web reinforcement 2017, https://doi.org/10.1080/19648189.2017.1344151
  2. Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.225
  3. Experimental study on the fracture toughness of concrete reinforced with multi-size polypropylene fibres vol.71, pp.9, 2016, https://doi.org/10.1680/jmacr.17.00474
  4. An Experimental Study on the Compressive Dynamic Performance of Polypropylene Fiber Reinforced Concrete for Retaining Structure under Automobile Collision Magnitude vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8826006
  5. Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber vol.261, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2020.120610