Acknowledgement
Supported by : TUBITAK (The Scientific and Technological Research Council of Turkey)
References
- Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 1291-1303. https://doi.org/10.12989/scs.2015.18.5.1291
- Badr, A., Ashour, A.F. and Platten, A.K. (2006), "Statistical variations in impact resistance of polypropylene fibre-reinforced concrete", Int. J. Impact Eng., 32(11), 1907-1920. https://doi.org/10.1016/j.ijimpeng.2005.05.003
- Barr, B. and Bouamrata, A. (1988), "Development of a repeated drop-weight impact testing apparatus for studying fibre reinforced concrete materials", Compos., 19(6), 453-466. https://doi.org/10.1016/0010-4361(88)90703-3
- BASF Chemical Company (2015), Available from: http://www.master-builders-solutions.basf.us/en/us/products/masterfiber/1651?Product= MasterFiberF70., Construction Chemicals, Beachwood, OH, USA.
- Cheng, X., Zhao, W., Liu, S., Xu, Y. and Bao, J. (2014), "Damage of scarf-repaired composite laminates subjected to low-velocity impacts", Steel Compos. Struct., 17(2), 199-213. https://doi.org/10.12989/scs.2014.17.2.199
- Dancygier, A.N. (2009), "Characteristics of high performance reinforced concrete barriers that resist nondeforming projectile impact", Struct. Eng. Mech., 32(5), 685-699. https://doi.org/10.12989/sem.2009.32.5.685
- Disimile, P.J., Luke, A.S. and Toy, N. (2009), "The hydrodynamic ram pressure generated by spherical projectiles", Int. J. Impact Eng., 36(6), 821-829. https://doi.org/10.1016/j.ijimpeng.2008.12.009
- Flightglobal (2016), Available from: https://www.flightglobal.com/pdfarchive/view/1958/1958-1-%20-%200145.html,Quadrant House, The Quadrant, Sutton SM2 5AS, UK.
- Irfanoglu, A. and Hoffmann, C.M. (2008), "Engineering perspective of the collapse of WTC-I", J. Perform. Constr. Fac., 22(1), 62-67. https://doi.org/10.1061/(ASCE)0887-3828(2008)22:1(62)
- Jankowiak, T., Rusinek, A., Kpenyigba, K.M. and Pesci, R. (2014), "Ballistic behavior of steel sheet subjected to impact and perforation", Steel Compos. Struct., 16(6), 595-609. https://doi.org/10.12989/scs.2014.16.6.595
- Kantar, E. and Anil, O. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230. https://doi.org/10.12989/scs.2012.12.3.207
- Korucu, H. (2016), "Polypropylene fiber reinforced concrete plates under high velocity fluid impact. Part II: modeling and simulation", Struct. Eng. Mech., 60(2), 225-235 https://doi.org/10.12989/sem.2016.60.2.225
- Korucu, H. and Gulkan, P. (2011), "High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part I: experimental investigations", Struct. Eng. Mech., 40, 595-616. https://doi.org/10.12989/sem.2011.40.5.595
- Manolis, G.D., Gareis, P.J., Tsonos, A.D. and Neal, J.A. (1997), "Dynamic properties of polypropylene fiber-reinforced concrete slabs", Cement Concrete Compos., 19(4), 341-349. https://doi.org/10.1016/S0958-9465(97)00030-9
- May, I.M., Chen, Y., Owen, D.R.J., Feng, Y.T. and Thiele, P.J. (2006), "Reinforced concrete beams under drop-weight impact loads", Comput. Concrete, 3(2), 79-90. https://doi.org/10.12989/cac.2006.3.2_3.079
- Mazek, S.A. and Mostafa, A.A., "Impact of composite materials on performance of reinforced concrete panels" Comput. Concrete, 14(6), 767-783. https://doi.org/10.12989/cac.2014.14.6.767
- Miamis, K., Irfanoglu, A. and Sozen, M.A. (2009), "Dominant factor in the collapse of WTC-I", J. Perform. Constr. Fac., 23(4), 203-208. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000014
- Micheli, G.B., Driemeier, L. and Alves, M. (2015), "A finite element-experimental study of the impact of spheres on aluminium thin plates", Struct. Eng. Mech., 55(2), 263-280. https://doi.org/10.12989/sem.2015.55.2.263
- Mindess, S. and Vondran, G. (1998), "Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading", Cement Concrete Res., 19(1), 109-115.
- Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A. (2005a), "September 11, 2001, airliner crash into the Pentagon", J. Perform. Constr. Fac., 19(3), 189-196. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:3(189)
- Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A. (2005b), "Description of structural damage caused by the terrorist attack on the Pentagon", J. Perform. Constr. Fac., 19(3), 197-205. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:3(197)
- Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A. (2003), "The Pentagon building performance report", ASCE Structural Engineering Institute, Reston, VA, USA.
- Moussa, N.A., Whale, M.D., Groszmann, D.E. and Zhang, X.J. (1997), "The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris", Final Report., Report No.: DOT/FAA/AR-96/95, Department of Transportation (US), Federal Aviation Administration, Washington D.C., USA.
- Nia, A.A., Hedayatian, M., Nili, M. and Sabet, V.A. (2012), "An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete", Int. J. Impact Eng., 46, 62-73. https://doi.org/10.1016/j.ijimpeng.2012.01.009
- Nili, M. and Afroughsabet, V. (2010), "The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete", Constr. Build. Mater., 24(6), 927-933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
- Nouri, M.D., Hatami, H. and Jahromi, A.G. (2015), "Experimental and numerical investigation of expanded metal tube absorber under axial impact loading", Struct. Eng. Mech., 54(6), 1245-1266. https://doi.org/10.12989/sem.2015.54.6.1245
- Perumal, R. (2014), "Performance and modeling of high-performance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255
- Pujol, S. and Brachmann, I. (2007), "Experimental and analytical study on the response of barriers to fluid impact. Technical report", Civil Engineering, Purdue University, West Lafayette, IN, USA.
- Rahmani, T., Kiani, B., Shekarchi, M. and Safari, A. (2012), "Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test", Constr. Build. Mater., 37, 360-369. https://doi.org/10.1016/j.conbuildmat.2012.07.068
- Riera, J.D. (1968), "On stress analysis of structures subjected to aircraft impact forces", Nucl. Eng. Des. 8(4), 415-426. https://doi.org/10.1016/0029-5493(68)90039-3
- Sauer, M. (2011), "Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics", Int. J. Impact Eng., 38(6), 511-520. https://doi.org/10.1016/j.ijimpeng.2010.10.023
- Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength of nylon and polypropylene fiber reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., von Riesemann, W.A., Bickel, D.C. and Parks, M.B. (1993), "Full-scale aircraft impact test for evaluation of impact force", Nucl. Eng. Des., 140(3), 373-385. https://doi.org/10.1016/0029-5493(93)90119-T
- Sunder, S.S. (2005), Federal building and fire safety investigation of the World Trade Center Disaster: Final report of the National Construction Safety Team on the collapses of the World Trade Center Towers, Final report., Report No.: NIST NCSTAR 1, National Institute of Standards and Technology (NIST) Gaithersburg, MA, USA.
- Varas, D., Lopez-Punte, J. and Zaera, R. (2009), "Experimental analysis of fluid-filled tubes subjected to high-velocity impact", Int. J. Impact Eng., 36(1), 81-89. https://doi.org/10.1016/j.ijimpeng.2008.04.006
- Xue, L. and Wierzbicki, T. (2003), "High-speed impact of liquid-filled cylinders", Report No.:108, MIT, Impact and Crashworthiness Laboratory, Cambridge, MA, USA.
Cited by
- Influence of polypropylene fibres on the shear strength of RC beams with web reinforcement 2017, https://doi.org/10.1080/19648189.2017.1344151
- Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.225
- Experimental study on the fracture toughness of concrete reinforced with multi-size polypropylene fibres vol.71, pp.9, 2016, https://doi.org/10.1680/jmacr.17.00474
- An Experimental Study on the Compressive Dynamic Performance of Polypropylene Fiber Reinforced Concrete for Retaining Structure under Automobile Collision Magnitude vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8826006
- Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber vol.261, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2020.120610