DOI QR코드

DOI QR Code

Mineral Compositions of Korean Dancheong Pigment Products using Quantitative XRD

정량 X-선 회절분석을 이용한 국내시판 단청안료의 광물조성 연구

  • Moon, Dong Hyeok (Division of Conservation Science, National Research Institute of Cultural Heritage) ;
  • Han, Min Su (Division of Conservation Science, National Research Institute of Cultural Heritage) ;
  • Jeong, Hye Young (Division of Restoration Technology, National Research Institute of Cultural Heritage) ;
  • Go, In Hee (Division of Restoration Technology, National Research Institute of Cultural Heritage) ;
  • Cho, Hyen Goo (Department of Geology, Gyeongsang National University)
  • 문동혁 (국립문화재연구소 보존과학연구실) ;
  • 한민수 (국립문화재연구소 보존과학연구실) ;
  • 정혜영 (국립문화재연구소 복원기술연구실) ;
  • 고인희 (국립문화재연구소 복원기술연구실) ;
  • 조현구 (경상대학교 지질과학과)
  • Received : 2016.08.05
  • Accepted : 2016.09.19
  • Published : 2016.09.20

Abstract

Mineral composition and content of 22 Korean Dancheong pigment products were obtained by Rietveld quantitative analysis. Jubosa, Hwang, Seokrok, Seokcheong and Hobun consist of pure cinnabar, orpiment, malachite, azurite and calcite (or aragonite), respectively. Whereas Seokganju, Hwangto, Noerok, Lapis lazuli, Baekto and Cockie hobun mainly consist of hematite, goethite, celadonite, lazurite, kaolin mineral and portlandite, respectively. And they all consist of soil minerals (quartz, feldspar, sericite and vermiculite) and filler minerals in the industry field (calcite, gypsum and anhydrite) at a different content. Quantitative XRD proved more useful method to determined exact mineral composition and content than chemical or microscopical data. If this method utilize for specification of natural pigment product, it is considered to be applicable in restoration technology and conservation science field.

본 연구는 현재 단청시공에 실제 사용되고 있는 국산 천연안료 제품 총 22종을 대상으로 리트벨트법을 활용한 정량 X-선 회절분석을 실시하여 구성성분의 조성과 함량 특성을 밝히고자 하였다. 분석결과, 주보사와 황, 석록, 석청, 호분 등의 제품들은 각각 거의 순수한 진사, 웅황, 공작석, 남동석 및 방해석 또는 아라고나이트로 구성된 것으로 판단된다. 반면, 석간주와 황토, 뇌록, 라피스라즐리, 백토, 꼬막호분 등의 제품들은 각각 적철석, 침철석, 뇌록석, 라주라이트, 고령석 및 포틀랜드석 등이 주구성광물이며, 그 외 석영, 장석, 견운모, 질석 등 일반적인 토양에 풍부한 광물과 방해석, 석고 및 경석고 등과 같이 산업계에서 충진제로 활용되는 광물들이 각 제품에 다양한 비율로 함유되어 있는 것으로 나타났다. 이와 같이 정량 X-선 회절분석을 통하여 화학조성분석이나 현미경관찰만으로는 획득하기 쉽지 않은 보다 구체적인 안료 제품들의 광물조성 및 그 함량 비에 대한 정보를 획득할 수 있었으며, 추후 이를 천연안료제품의 품질기준 설정에 활용하거나 대체원료수급 및 품질향상을 통한 보존과학연구 등에 다양한 방법으로 적용이 가능할 것으로 사료된다.

Keywords

References

  1. Bamford, P.M., McQueen, K.G. and Scott, K.M., 2004, Geochemical dispersion and under-cover ecpression of gold mineralization at the wyoming gold deposit, tomingley, nsw. Regolith 2004, CRC LEME, 26-28.
  2. Boni, M., Rollinson, G., Mondillo, N., Balassone, G. and Santoro, L., 2013, Quantitative mineralogical characterization of karst bauxite deposits in the southern Apennines, Italy. Economic Geology, 108, 813-833. https://doi.org/10.2113/econgeo.108.4.813
  3. Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M., 2004, Herbertsmithite, $Cu_3Zn(OH)_6Cl_2$, a new species, and the definition of paratacamite. Mineralogical Magazine, 68(3), 527-539. https://doi.org/10.1180/0026461046830204
  4. Cho, H.G., Kim, S.O., Yi, H.I. and Shin, K.H., 2011, Mineral distribution in the southeastern Yellow Sea surface sediments; KORDI Cruise Samples in 2010. Journal of Mineralogical Society of Korea, 24(3), 205-216. (in Korean with English abstract) https://doi.org/10.9727/jmsk.2011.24.3.205
  5. Choi, J.B. and Kim, T.H., 2001, Rietveld refinement and crystral structure of K-Ba substituted synthetic hollandite, $K_2Ba_{1-x}Cr_2Ti_6O_{16}$. Journal of Mineralogical Society of Korea, 14(2), 128-136. (in Korean with English abstract)
  6. Choi, J.B., Jwa, Y.J., Kim, K.K. and Hwang, G.C., 2006, Analyses of mineral composition of Geochang granitic rocks for stone specification. Journal of Mineralogical Society of Korea, 19(4), 363-381. (in Korean with English abstract)
  7. Chun, Y.G., Kim, W.K., Jo, Y.H., Han, D.R., Kim, S.D. and Lee, C.H., 2009, Pigment analysis and nondestructive deterioration diagnosis of the wall paintings in Gwanyongsayaksajeon (Yaksajeon hall of Gwanyongsa temple), Changnyeong, Korea. Journal of Conservation Science, 25(4), 383-398. (in Korean with English abstract)
  8. Chung, F.H., 1974a, Quantitative interpretation of X-ray diffraction patterns of mixture. I. Matrix flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519-525. https://doi.org/10.1107/S0021889874010375
  9. Chung, F.H., 1974b, Quantitative interpretation of X-ray diffraction patterns of mixture. II. Adiabatic principles of X-ray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 519-525. https://doi.org/10.1107/S0021889874010375
  10. Davis, B.L. and Walawender, M.J., 1982, Quantitative mineralogical analysis of granitoid rocks: a comparison of X-ray and optical techniques. American Mineralogist, 67, 1135-1143.
  11. Do, J.Y., Kim, S.J., Lee, S.J., Ahn, B.C., Yun, S.C. and Kim, K.J., 2009, A study on functionality of the Ulreungdo Seokganju as Korean traditional red pigment. Journal of Mineralogical Society of Korea, 22(2), 153-162. (in Korean with English abstract)
  12. Evans, K.A., Gandy, C.J. and Banwart, S.A., 2003, Mineralogical, numerical and analytical studies of the coupled oxidation of pyrite and coal. Mineralogical Magazine, 67(2), 381-398. https://doi.org/10.1180/0026461036720107
  13. Go, I.H., Jeong, H.Y., Park, J.H., Jeong, S.L. and Jo, A.H., 2015, The characteristics of particle size in natural mineral pigment for azurite raw material. Journal of Conservation Science, 31(4), 331-339. (in Korean with English abstract) https://doi.org/10.12654/JCS.2015.31.4.01
  14. Hejl, E. and Tippelt, G., 2005, Prehistorical Pigment Mining on Santorini's Neighbouring Island Anafi (Cyclades, Greece). Austrian Journal of Earth Sciences, 98, 22-33.
  15. Hill, R.J. and Howard, C.J., 1987, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. Journal of Applied Crystallography, 20, 467-474. https://doi.org/10.1107/S0021889887086199
  16. Industrial Mineral Bank, 2005, Korean standard reference mineral : KSRM. Mineral and Industry, 18(2), 63-65. (in Korean)
  17. Keeling, J.L., Raven, M.D. and Gates, W.P., 2000, Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the uley graphite mine, south Australia. Clays and Clay Minerals, 48, 537-548. https://doi.org/10.1346/CCMN.2000.0480506
  18. Kemp, S.J., Merriman, R.J. and Bouch, J.E., 2005, Clay mineral reaction progress- the maturity and burial history of the lias group of england and wales. Clay Minerals, 40, 43-61. https://doi.org/10.1180/0009855054010154
  19. Kim, J.W., Lee, H.S., Lee, H.Y., Kim, M.N. and Kang, D.I., 2015, Effect to the copper system pigments by the nitrogen dioxide($NO_2$) gas. Journal of Conservation Science, 31(4), 403-409. (in Korean with English abstract) https://doi.org/10.12654/JCS.2015.31.4.08
  20. Kim, S.K., Heo, J.S., Lee, H.H., Seo, M.S. and Han, M.S., 2013, Composition Analysis of Painted Pigments for the Jeoguibon (Patterns of the Queen's Ceremonial Robe) in Changdeok Palace. Journal of Conservation Science, 29(4), 379-388. (in Korean with English abstract) https://doi.org/10.12654/JCS.2013.29.4.08
  21. Kim, Y.J., Cho, D.L. and Park, Y.S., 1989, K-Ar ages and major mineral compositions of the mesozoic igneous rocks in the vicinity of the Geochang area. J. Korea Inst. Min. Geol., 22(2), 117-127. (in Korean with English abstract)
  22. Lee, C.L., Lee, Y.J. and Hayashi, M, 1992, Petrology of jurassic granitoinds in the Hamyang-Geochang Area, Korea. J. Korea Inst. Min. Geol., 25, 447-461.
  23. Lee, C.H., Yi, J.E. and Han, N.R., 2012, Characterization and analysis of painted pigments for the clay statues in Donggwanwangmyo shrine, Seoul. Journal of Conservation Science, 28(2), 101-112. (in Korean with English abstract) https://doi.org/10.12654/JCS.2012.28.2.101
  24. Lee, K.M., Kim, S.K., Bae, S.B. and Kim, M.J., 2015, Experimental study on light and gas pollution resistance of commercial natural pigments for Dancheong - Focusing on Korea, Japan and China products -. Journal of Conservation Science, 31(4), 443-455. (in Korean with English abstract) https://doi.org/10.12654/JCS.2015.31.4.11
  25. Monecke, T., Kohler, S., Kleeberg, R. and Herzig, P.M., 2001, Quantitative phase-analysis by the Rietveld method using x-ray powder-diffraction data: Application to the study of alteration halos associated with volcanic-rock-hosted massive sulfide deposits. Can. Mineral., 39, 1617-1633. https://doi.org/10.2113/gscanmin.39.6.1617
  26. Moon, Y.H., Choi, J.B. and Lee, B.I., 2000, Behavior of rare earth elements in synthetic fluorapatites revealed by Rietveld structure refinement data. Journal of Mineralogical Society of Korea, 13(4), 221-230. (in Korean with English abstract)
  27. Moon, Y.H., Choi, J.B. and Lee, B.I., 2001, Crystallography and layered structure of synthetic perovskite-type ($K_2La_2Ti_nO_{2n+4}$) minerals. Journal of Mineralogical Society of Korea, 14(1), 73-84. (in Korean with English abstract)
  28. Park, C.Y., Park, Y.S., Shin, I.H., Jeong, Y.J. and Lizumi, S., 1998, Quantitative analysis of the major elements in igneous rocks by x-ray fluorescence spectrometer. Journal of Korean Earth Science Society, 19(2), 182-193. (in Korean with English abstract)
  29. Park, J.H., Jeong, H.Y., Go, I.H., Jeong, S.L. and Jo, A.H., 2015, A study on the physical properties of Seokrok and Noerok used as green pigment. Journal of Conservation Science, 31(4), 429-441. (in Korean with English abstract) https://doi.org/10.12654/JCS.2015.31.4.10
  30. Potter, D.K., Corbett, W.M., Barclay, S.A. and Gaszeldine, R., 2004, Quantification of illite content in sedimentary rocks using magnetic susceptibility-a rapid complement or alternative to x-ray diffraction. Journal of Sedimentary Research, 74, 730-735. https://doi.org/10.1306/021304740730
  31. Prieto, G., Wright, V., Burger, R.L., Cooke, C.A., Zeballos-Velasquez, E.L., Watanave, A., Suchomel, M.R. and Suescun, L., 2016, The source, processing and use of red pigment based on hematite and cinnabar at Gramalote, an early Initial period (1500-1200 cal. B.C.) maritime community, north coast of Peru. Journal of Archaeological Science: Report 5, 45-60. https://doi.org/10.1016/j.jasrep.2015.10.026
  32. Rietveld, H.M., 1969, A profile refinement method for nuclear and magnetic structure. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
  33. Sagong, H. and Jwa, Y.J., 1997, Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area. Journal of Petrological Society of Korea, 6(3), 185-209. (in Korean with English abstract)
  34. Schmid, R., Fettes, D., Harte, B., Davis, E. and Desmons, J., 2007. A systematic nomenclature for metamorphic rocks. 1. How to name a metamorphic rock. Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks. SCMR website (http://www.bgs.ac.uk/SCMRH).
  35. Schofield, P.F., Knight, K.S., Covey-Crump, S.J., Cressey, G. and Stretton, I.C., 2002, Accurate quantification of the modal mineralogy of rocks when image analysis is difficult. Minerlogical Magazine, 66(1), 189-200. https://doi.org/10.1180/0026461026610022
  36. Son, B.K., Kim, H.J. and Ahn, G.O., 2009, Mineral composition of the sediment of Ulleoung basin, Korea. Journal of Mineralogical Society of Korea, 22(2), 115-127. (in Korean with English abstract)
  37. Son, B.K., Yoshimura, T. and Fukasawa, H., 2001, Diagenesis of dioctahedral and trioctahedral smectites from alteration beds in Miocene to Pleistocene rocks of the Niigata basin, Japan. Clays Clay Miner., 49, 333-346. https://doi.org/10.1346/CCMN.2001.0490407
  38. Song, Y.N. and Kim, G.H., 2014, A consideration of pigments name on ceremonial writing of Youngsan ritual ceremony Buddhist painting, BongJeongsa. Journal of Conservation Science, 30(1), 13-25. (in Korean with English abstract) https://doi.org/10.12654/JCS.2014.30.1.02
  39. Snyder, R.L. and Bish, D.L., 1989, Quantitative analysis. In. Bish, D.L. and Post, J.E. (eds.), Modern Powder Diffraction, Reviews in Mineralogy, 20, Mineral. Soc. America, 101-144.
  40. Srodon, J., 2002, Quantitative mineralogy of sedimentary rocks which emphasis on clays and with applications to K-Ar dating. Miner. Mag., 66, 677-687. https://doi.org/10.1180/0026461026650055
  41. Taylor, J.C., 1991, Computer program for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6, 2-9. https://doi.org/10.1017/S0885715600016778
  42. Tilley, D.B. and Eggleton, R.A., 2005, Titanite low-temperature alteration and Ti mobility. Clays and Clay Minerals, 53, 100-107. https://doi.org/10.1346/CCMN.2005.0530110
  43. Tonui, E. and de Caritat, P., 2003, Composition, diagenesis, and weathering of the sediments and basement of the Callabonna sub-basin, central Australia: Implications for landscape evolution. Journal of Sedimentary Research, 73, 1036-1050. https://doi.org/10.1306/041303731036
  44. USGS, 2014, 2014 Minerals Yearbook, U. S. Geological Survey.
  45. Weidler, P.G., Luster, J., Schneider, J.S., Sticher, H. and Gehring, A.U., 1998, The Rietveld method applied to the quantitative mineralogical and chemical analysis of a ferralitic soil. European J. Soil Sci., 49, 95-105. https://doi.org/10.1046/j.1365-2389.1998.00138.x
  46. Yoo, Y.M., Han, M.S. and Lee, J.J., 2014, Species and characteristics of particles for traditional red and green pigments used in temples. Journal of Conservation Science, 30(4), 365-372. (in Korean with English abstract) https://doi.org/10.12654/JCS.2014.30.4.05

Cited by

  1. Raman mapping study of the pigments in the dancheong of Korean traditional buildings vol.70, pp.8, 2017, https://doi.org/10.3938/jkps.70.796