DOI QR코드

DOI QR Code

Classification Model of Types of Crime based on Random-Forest Algorithms and Monitoring Interface Design Factors for Real-time Crime Prediction

실시간 범죄 예측을 위한 랜덤포레스트 알고리즘 기반의 범죄 유형 분류모델 및 모니터링 인터페이스 디자인 요소 제안

  • 박준영 (한국과학기술원 IT융합연구소) ;
  • 채명수 (한국과학기술원 IT융합연구소) ;
  • 정성관 (한국과학기술원 IT융합연구소)
  • Received : 2016.03.17
  • Accepted : 2016.06.16
  • Published : 2016.09.15

Abstract

Recently, with more severe types felonies such as robbery and sexual violence, the importance of crime prediction and prevention is emphasized. For accurate and prompt crime prediction and prevention, both a classification model of crime with high accuracy based on past criminal records and well-designed system interface are required. However previous studies on the analysis of crime factors have limitations in terms of accuracy due to the difficulty of data preprocessing. In addition, existing crime monitoring systems merely offer a vast amount of crime analysis results, thereby they fail to provide users with functions for more effective monitoring. In this paper, we propose a classification model for types of crime based on random-forest algorithms and system design factors for real-time crime prediction. From our experiments, we proved that our proposed classification model is superior to others that only use criminal records in terms of accuracy. Through the analysis of existing crime monitoring systems, we also designed and developed a system for real-time crime monitoring.

최근 강도, 성폭력과 같은 중범죄들의 수위가 높아짐에 따라 범죄 예측 및 예방에 대한 중요성이 강조되고 있다. 정확한 범죄예측을 위해서는 과거 범죄기록 데이터를 기반으로 정확도 높은 범죄분류모델을 만드는 작업이 필요하며, 신속한 범죄 대응을 위한 시스템 인터페이스가 요구된다. 그러나 기존의 범죄 요소 분석 연구는 데이터 전처리에 대한 난해함으로 인해 정확도 측면에서 한계를 보이며, 범죄 모니터링 시스템은 방대한 양의 범죄 사건기록 분석 결과를 단순 제공함으로써 사용자에게 효과적인 모니터링 기능을 제공하지 못하고 있다. 따라서 본 연구는 실시간 범죄 예측을 위한 랜덤 포레스트 알고리즘 기반의 범죄 유형 분류모델 및 시스템 인터페이스 디자인 요소를 제안한다. 실험을 통해 본 연구는 제안하는 모델이 단순히 범죄기록 데이터만으로 범죄유형을 분류하는 모델 보다 우수함을 입증하였고, 기존의 범죄 모니터링 시스템 분석을 통해 실시간 범죄 모니터링을 위한 시스템 인터페이스를 설계 및 구현하였다.

Keywords

Acknowledgement

Grant : 범죄 발생환경. 행동패턴 및 심리정보 등 융합정보 적용형 엔트로피 필터링 예측 분석 기반의 실시간 범죄 예측.예방 시스템 개발

Supported by : 정보통신산업진흥원

References

  1. H. Chen, W. Chung, J. Xu, G. Wang, Y. Qin, and M. Chau, "Crime Data Mining: A General Framework and Some Examples," Computer, Vol. 37, No. 4, pp. 50-56, 2004. https://doi.org/10.1109/MC.2004.1297301
  2. R. Iqbal, M. Murad, A. Mustapha, P. Panahy, and N. Khanahmadliravi, "An Experimental Study of Classification Algorithms for Crime Prediction," Indian Journal of Science and Technology, Vol. 6, No. 3, pp. 4219-4225, 2013.
  3. S. Shojaee, A. Mustapha, F. Sidi, and M. Jabar, "A Study on Classification Learning Algorithms to Predict Crime Status," International Journal of Digital Content Technology and its Applications, Vol. 7, No. 9, pp. 361-369, 2013.
  4. U. Saeed, M. Sarim, A. Usmani, A. Mukhtar, A. Shaikh, and S. Raffat, "Application of Machine Learning Algorithms in Crime Classification and Classification Rule Mining," Research Journal of Recent Sciences, Vol. 4, No. 3, pp. 106-114, 2015.
  5. L. McClendon, M. Natarajan, "Using Machine Learning Algorithms to Analyze Crime Data," Machine Learning and Applications: An International Journal (MLAIJ), Vol. 2, No. 1, 2015.
  6. M. Gerber, "Predicting crime using twitter and kernel density estimation," Decision Support Systems, Vol. 61, pp. 115-125, 2014. https://doi.org/10.1016/j.dss.2014.02.003
  7. M. Alruil, "Using text mining to identify crime patterns from Arabic crime news report corpus," Ph. D Thesis in De Montfort University, 2012.
  8. R. Murataya, D. R. Gutierrez, "Effects of Weather on Crime," International Journal of Humanities and Social Science, Vol. 3, No. 10, 2013.
  9. C. Kim, I. Kang, D. Park, S. Kim, "Analysis of the Five Major Crime Utilizing the Correlation, Regression Analysis with GIS," Journal of the Korean Society for Geospatial Information System, Vol. 22, No. 3, pp. 71-77, Sep. 2014. (in Korean) https://doi.org/10.7319/KOGSIS.2014.22.3.071
  10. J. Bendler, T. Brandt, S. Wagner, D. Neumann, "Investigating Crime-to-Twitter Relationships in Urban Environments-Facilitating a Virtual Neighborhood Watch," Proc. of the 22th European Conference on Information Systems(ECIS), 2014.
  11. Crime Monitoring System, [Online] Available: http://itcknow.kaist.ac.kr/crimeGraph.wmv
  12. W. Lee, S. Kim, G. Kim, K. Choi, "Implementation of Modularized Morphological Analyzer," Proc. of the Human and Cognitive Language Technology 1999, pp. 123-136, Oct. 1999. (in Korean)
  13. J. R. Lewis, J. Sauro, "The Factor Structure of the System Usability Scale," Proc. of the Human Centered Design (HCD) 2009, pp. 94-103, 2009.