References
- Gouveia L, Marques A, Da Silva T, Reis A. Neochloris oleoabundans UTEX #1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 2009;36:821-826. https://doi.org/10.1007/s10295-009-0559-2
- Gouveia L, Oliveira A. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009;36:269-274. https://doi.org/10.1007/s10295-008-0495-6
- Levine RB, Costanza-Robinson MS, Spatafora GA. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenerg. 2009;35:40-49.
- Pruvost J, Van Vooren G, Cogne G, Legrand J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol. 2009;100:5988-5995. https://doi.org/10.1016/j.biortech.2009.06.004
- Gour RS, Kant A, Chauhan RS. Screening of micro algae for growth and lipid accumulation properties. J. Algal. Biomass Utln. 2014;5:38-46.
- Li Y, Horsman M, Wang B, Wu N, Lan C. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008;81:629-636. https://doi.org/10.1007/s00253-008-1681-1
- Meti BS, Sailaja B. Treatment of sugar process waste water and biogas production using algal biomass. Int. J. Eng. Res. Technol. 2014;3:61-67.
- James SC, Boriah V. Modeling algae growth in an open-channel raceway. J. Comput. Biol. 2010;17:895-906. https://doi.org/10.1089/cmb.2009.0078
- Terry KT, Raymond LP. System design for the autotrophic production of microalgae. Enzyme Microb. Technol. 1985;7:474-487. https://doi.org/10.1016/0141-0229(85)90148-6
- Santos AM, Lamers PP, Janssen M, Wijffels RH. Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions. Algal Res. 2013;2:204-211. https://doi.org/10.1016/j.algal.2013.04.007
- Da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl. Biochem. Biotech. 2009;159:568-578. https://doi.org/10.1007/s12010-008-8443-5
- Giovanardi M, Baldisserotto C, Ferroni L, Longoni P, Cella R, Pancaldi S. Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose. Protoplasma 2014;251:115-125. https://doi.org/10.1007/s00709-013-0531-x
- Urreta I, Ikaran Z, Janices I, et al. Revalorization of Neochloris oleoabundans biomass as source of biodiesel by concurrent production of lipids and carotenoids. Algal Res. 2014;5:16-22. https://doi.org/10.1016/j.algal.2014.05.001
- Wang B, Lan CQ. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 2011;102:639-644.
- Yang Y, Mininberg B, Tarbet A, Weathers P. At high temperature lipid production in Ettlia oleoabundans occurs before nitrate depletion. Appl. Microbiol. Biot. 2013;97:2263-2273. https://doi.org/10.1007/s00253-012-4671-2
- Choi HJ, Lee SM. Effects of microalgae on the removal of nutrients from wastewater: Various concentrations of Chlorella vulgaris. Environ. Eng. Res. 2012;17:S3-S8. https://doi.org/10.4491/eer.2012.17.1.003
- Tam NFY, Wong YS. The comparison of growth and nutrient removal efficiency of Chlorella pyrenoidosa in settled and activated sewages. Environ. Pollut. 1990;65:93-108. https://doi.org/10.1016/0269-7491(90)90177-E
- Park K, Lim B, Lee K. Growth of microalgae in diluted process water of the animal wastewater treatment plant. Water Sci. Technol. 2009;59:2111-2116. https://doi.org/10.2166/wst.2009.233
- Tam NFY, Wong YS. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 1996;57:45-50. https://doi.org/10.1016/0960-8524(96)00045-4
- Park J, Jin HF, Lim BR, Park KY, Lee K. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour. Technol. 2010;101:8649-8657. https://doi.org/10.1016/j.biortech.2010.06.142
- Franchino M, Comino E, Bona F, Riggio VA. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 2013;92:738-744. https://doi.org/10.1016/j.chemosphere.2013.04.023
- Yang Y, Xu J, Vail D, Weathers P. Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents. Bioresour. Technol. 2011;102:5076-5082. https://doi.org/10.1016/j.biortech.2011.02.014
- Sturm BS, Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl. Energ. 2011;88:3499-3506. https://doi.org/10.1016/j.apenergy.2010.12.056
- Clesceri L, Greenberg A, Eaton A. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington D.C: American Public Health Association; 1998.
- Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G. Water treatment principles and design. Hoboken, NJ: John Wiley & Sons; 2005.
- Ksibi M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 2006;119:161-165. https://doi.org/10.1016/j.cej.2006.03.022
- James DE. Culturing algae. Carolina Biological Supply Company; 1978.
- Forster CF. The surface of activated sludge particles in relation to their settling characteristics. Water Res. 1968;2:767-776. https://doi.org/10.1016/0043-1354(68)90011-0
- Pere J, Alen R, Viikari L, Eriksson L. Characterization and dewatering of activated sludge from the pulp and paper industry. Water Sci. Technol. 1993;28:193-201.
- Liao BQ, Allen DG, Droppo IG, Leppard GG, Liss SN. Surface properties of sludge and their role in bioflocculation and settleability. Water Res. 2001;35:339-350. https://doi.org/10.1016/S0043-1354(00)00277-3
- Su B, Qu Z, Song Y, Jia L, Zhu J. Investigation of measurement methods and characterization of zeta potential for aerobic granular sludge. J. Environ. Chem. Eng. 2014;2:1142-1147. https://doi.org/10.1016/j.jece.2014.03.006
- Morgan JW, Forster CF, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res. 1990;24:743-750. https://doi.org/10.1016/0043-1354(90)90030-A
- Roudsari FP, Mehrnia MR, Asadi A, Moayedi Z, Ranjbar R. Effect of microalgae/activated sludge ratio on cooperative treatment of anaerobic effluent of municipal wastewater. Appl. Biochem. Biotech. 2014;172:131-140. https://doi.org/10.1007/s12010-013-0480-z
- Travieso L, Benitez F, Sanchez E, Borja R, Martin A, Colmenarejo MF. Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste. Ecol. Eng. 2006;28:158-165. https://doi.org/10.1016/j.ecoleng.2006.06.001
- Carlsson B. An introduction to sedimentation theory in wastewater treatment. Systems and Control Group, Uppsala University; 1998.
- Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 2010;14:217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Menetrez MY. An overview of algae biofuel production and potential environmental impact. Environ. Sci. Technol. 2012;46:7073-7085. https://doi.org/10.1021/es300917r
- Rodolfi L, Zittelli GC, Bassi N, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009;102:100-112. https://doi.org/10.1002/bit.22033
- Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the U.S. Department of Energy's Aquatic Species Program-Biodiesel from algae. U.S. Report NREL/TP-580-24190. National Renewable Energy Laboratory: Golden CO; 1998.
Cited by
- Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium vol.40, pp.8, 2017, https://doi.org/10.1007/s00449-017-1780-4
- Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review) vol.53, pp.6, 2017, https://doi.org/10.1134/S0003683817060096
- Determination of biokinetic coefficients for nutrient removal from anaerobic liquid digestate by mixed microalgae pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1671-3
- MLSS와 미세조류가 광합성 산소기반 질산화에 미치는 영향 vol.19, pp.4, 2016, https://doi.org/10.17663/jwr.2017.19.4.508
- Value Addition of Anaerobic Digestate From Biowaste: Thinking Beyond Agriculture vol.7, pp.2, 2016, https://doi.org/10.1007/s40518-020-00148-2
- Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization vol.11, pp.43, 2016, https://doi.org/10.1039/d1ra04845g
- Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: A way forward through waste valorization approach vol.803, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.150070
- Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review vol.304, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.114266
- Maximizing nutrient recycling from digestate for production of protein-rich microalgae for animal feed application vol.290, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2021.133180