DOI QR코드

DOI QR Code

저온 배양한 L-type 로티퍼(Brachionus plicatilis)의 적정 영양강화 수온, 시간 및 영양강화제 종류

Optimal Enrichment Temperature, Time and Materials for L-type Rotifer (Brachionus plicatilis) Cultured at a Low Temperature

  • 유해균 (동해수산연구소 양식산업과) ;
  • 변순규 (동해수산연구소 양식산업과) ;
  • 최진 (동해수산연구소 양식산업과) ;
  • 남명모 (동해수산연구소 양식산업과) ;
  • 이해영 (동해수산연구소 양식산업과) ;
  • 강희웅 (동해수산연구소 양식산업과) ;
  • 이주 (동해수산연구소 양식산업과)
  • Yoo, Hae-Kyun (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Byun, Soon-Gyu (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Choi, Jin (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Nam, Myeong-Mo (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Moon Lee, Haeyoung (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Kang, Hee Wong (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Lee, Chu (Aquaculture Industry Research Division, East Sea Fisheries Research Institute)
  • 투고 : 2016.07.29
  • 심사 : 2016.08.29
  • 발행 : 2016.08.31

초록

본 연구는 유용 냉수성 어류 등의 종묘생산 시 초기의 성장과 생존률을 향상시키기 위하여, 저온에서 증식할 수 있는 저온 내성을 가진 로티퍼(Brachionus plicatilis)를 배양하여, 수온 및 시간에 따른 영양강화 실험을 실시하였다. 로티퍼의 저온 배양은 $20^{\circ}C$에서 배양하던 로티퍼의 수온을 점차적으로 낮추면서 활력이 있는 개체의 선별 배양을 반복하여 최종적으로 $10^{\circ}C$에서 사육하였다. 영양강화는 상업적으로 이용되는 영양강화제인 A, S, SCV 및 SCP의 4종류를 사용하여 10, 15 및 $20^{\circ}C$의 수온에서 6, 12 및 24시간 실시하였다. 수온 $10^{\circ}C$에서 50일간 로티퍼의 증식률 실험을 한 결과 접종 밀도 $350{\pm}7.9$개체/ml에서 최종 배양 밀도는 $1,064{\pm}5.7$개체/ml로 약 3배 개체수가 증가하였다. 영양강화제에 포함된 지방산을 분석한 결과, n3계 고도불포화 지방산인 eicosapentaenoic acid (EPA, C20:5n-3) 및 docosahexaenoic acid(DHA, C22:6n-3)는 SCP에서 각각 15.49%, 35.03 %로 높게 나타났다. 영양강화한 로티퍼의 지방산 조성은 영양강화제에 따라 영향을 받았다. EPA는 SCP가 영양강화 수온 및 시간에 관계없이 2 % 이상을 차지하여 다른 영양강화제보다 높은 비율을 나타냈다. DHA는 S가 $15^{\circ}C$, 24시간 실험구에서 12.40 %로 높게 나타났다. 영양강화 로티퍼의 EPA와 DHA의 비율을 고려하면 S를 $20^{\circ}C$에서 12시간 영양강화한 실험구가 각각 3.09, 11.65 %로 높게 나타났다.

This study was undertaken to improve the survival and early life growth rates of cold-water fish by culturing rotifer (Brachionus plicatilis) with low-temperature tolerance. The enrichment experiment was carried out at different temperatures and over different time intervals. Cultivation of the rotifer at low temperatures was repeated, with the selected and cultured as the water temperature was gradually lowered from $20^{\circ}C$ to $10^{\circ}C$. Enrichment of the rotifer was completed using A, S, SCV and SCP. Enrichment was carried out after 6, 12 and 24 hours at three different temperatures (10, 15 and $20^{\circ}C$). In the growth experiments, the rotifer increased to approximately triple their original size, from $350{\pm}7.9ind./ml$ to $1,064{\pm}5.7ind./ml$ at $10^{\circ}C$ over 50 days. The fatty acid composition of the four enrichment materials was species-specific, with the highest ratios belonging to eicosapentaenoic acid (EPA, C20:5n-3) and docosahezaenoic acid (DHA, C22:6n-3) in SCP. The fatty acid composition of the rotifers was affected by the enrichment materials. The EPA (% of total fatty acid) was more than 2 % in SCP, which showed a higher ratio than the other enrichment materials. DHA was higher in S reaching 12.40 % at $15^{\circ}C$ for 24 hours. The highest levels of EPA (3.09 %) and DHA (11.65 %) were obtained after the rotifers were enriched with S at $20^{\circ}C$ for 12hours.

키워드

참고문헌

  1. Altaff, K. and A. Janakiraman(2015), Effect of temperature on mass culture of the three species of zooplankton, Brachionus plicatilis, Cerodaphnia treticulata and Apocyclops dengizicus. International Journal of Fisheries and Aquatic Studies, Vol. 2, No. 4, pp. 49-53.
  2. Assavaaree, M., A. Hagiwara, K. Ide, K. Maruyama and E. Lubzens(2001), Low-temperature preservation (at $4^{\circ}C$) of marine rotifer Brachionus, Aquaculture Research, Vol. 32, No. 1, pp. 29-39. https://doi.org/10.1046/j.1365-2109.2001.00524.x
  3. Cahu, C. L., J. L. Z. Infante, A. Peres, P. Quazuguel and M. M. Le Gall(1998), Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes, Aquaculture, Vol. 161, No. 1, pp. 479-489. https://doi.org/10.1016/S0044-8486(97)00295-0
  4. Epp, R. W. and P. W. Winston(1977), Osmotic regulation in the brackish-water rotifer Brachionus Plicatilis (Muller), Journal of Experimental Biology, Vol. 68, pp. 151-56.
  5. Epp, R. W. and W. M. Lewis Jr(1980), Metabolic uniformity over the environmental temperature range in Brachionus plicatilis (Rotifera), Hydrobiologia, Vol. 73, pp. 145-147. https://doi.org/10.1007/BF00019439
  6. Fielder, D., G. Purser and S. Battaglene(2000), Effect of rapid changes in temperature and salinity on availability of the rotifers Brachionus rotundiformis and Brachionus plicatilis, Aquaculture, Vol. 189, pp. 85-99. https://doi.org/10.1016/S0044-8486(00)00369-0
  7. Folch, J., M. Lees and G. H. Sloane-Stanley(1957), A simple method for the isolation and purification of total lipids from animal tissues, Journal of Biological Chemistry, Vol. 226, No. 1, pp. 497-509.
  8. Fu, Y., A. Hada, T. Yamashita, Y. Yoshida and A. Hino(1997), Development of a continuous culture system for stable mass production of the marine rotifer Brachionus, Hydrobiologia, Vol. 358, No. 1-3, pp. 145-151. https://doi.org/10.1023/A:1003117430926
  9. Furuita, H., T. Takeuchi and K. Uematsu(1998), Effects of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus), Aquaculture, Vol. 161, No. 1-4, pp. 269-279. https://doi.org/10.1016/S0044-8486(97)00275-5
  10. Furuita, H., T. Takeuchi, T. Watanabe, H. Fujimoto, S. Sekiya and K. Imaizumi(1996), Requirements of Larval Yellowtail for Eicosapentaenoic Acid, Docosahexaenoic Acid, and n-3 Highly Unsaturated Fatty Acid, Fisheries science, Vol. 62, No. 3, pp. 372-379. https://doi.org/10.2331/fishsci.62.372
  11. Hagiwara, A., T. Kotani, T. W. Snell, M. Assava-Aree and K. Hirayama(1995), Morphology, reproduction, genetics, and mating behavior of small, tropical marine Brachionus strains (Rotifera), Journal of experimental marine biology and ecology, Vol. 194, No. 1, pp. 25-37. https://doi.org/10.1016/0022-0981(95)00081-X
  12. Hirayama, K. and S. Ogawa(1972), Fundamental studies on physiology of rotifer for its mass culture. 1. Filter feeding of rotifer, Bulletin of the Japanese Society of Scientific Fisheries, Vol. 38, No. 11, p. 1207. https://doi.org/10.2331/suisan.38.1207
  13. Ito, S., H. Sakamoto, M. Hori and K. Hirayama(1981), Morphological characteristics and suitable temperature for the growth of several strains of the rotifer, Brachionus plicatilis, Bulletin of the Faculty of Fisheries Nagasaki University, Vol. 51, pp. 9-16 (in Japanese with English abstract).
  14. Koiso, M. and A. Hino(2001), Effects of salinity on population growth, nutritive value, and feeding cost of the enriched rotifer, Brachionus plicatilis, Suisanzoshoku, Vol. 49, No. 1, pp. 41-46 (in Japanese with English abstract).
  15. Lubzens, E.(1987), Raising rotifers for use in aquaculture, Hydrobiologia, Vol. 147, No. 1, pp. 245-255. https://doi.org/10.1007/BF00025750
  16. Miracle, M. R. and M. Serra(1989), Salinity and temperature influence in rotifer life history characteristics, Hydrobiologia, Vol. 186/187, pp. 81-102. https://doi.org/10.1007/BF00048900
  17. Nakatani, T.(2008), Recent year class strengths of walleye pollock (Theragra chalcogramma) Pacific Population and oceanographic conditions for first-feeding pollock larvae, Bulletin of Fisheries Sciences Hokkaido University, Vol. 58, pp. 1-6 (in Japanese with English abstract).
  18. NRC(1993), National Research Council, Nutrient requirements of fish National Academy Press, Washington, D.C, USA. pp. 1-124.
  19. Oie, G. and Y. Olsen(1993), Influence of rapid changes in salinity and temperature on the mobility of the rotifer Brachionus plicatilis, Hydrobiologia, Vol. 255/256, pp. 81-86. https://doi.org/10.1007/BF00025824
  20. Onal, U, G. Topaloglu and A. Sepil(2015), The Performance of Continuous Rotifer (Brachionus Plicatilis) Culture System for Ornamental Fish Production. Journal of Life Sciences, Vol. 9, pp. 207-213.
  21. Rainuzzo, J. R., Y. Olsen and G. Rosenlund(1989), The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis, Aquaculture, Vol. 79, No. 1-4, pp. 157-161. https://doi.org/10.1016/0044-8486(89)90456-0
  22. Rainuzzo, J. R., K. I. Reitan and Y. Olsen(1997), The significance of lipids at early stage of marine fish: a review, Aquaculture, Vol. 155, pp. 103-115. https://doi.org/10.1016/S0044-8486(97)00121-X
  23. Reitan, K. I., J. R. Rainuzzo, G. Oie and Y. Olsen(1997), A review of the nutritional effects of algae in marine fish larvae, Aquaculture, Vol. 155, pp. 207-221. https://doi.org/10.1016/S0044-8486(97)00118-X
  24. Seo, Y. S., M. E. Park, J. G. Kim and S. U. Lee(2007), Egg development and juvenile growth of the Pacific cod Gadus macrocephalus (Korean East Sea population), Korean Journal of Fisheries and Aquatic Sciences, Vol. 40, No. 6, pp. 380-386 (in Korean with english abstract). https://doi.org/10.5657/kfas.2007.40.6.380
  25. Takeuchi, T.(2001), A review of feed development for early life stages of marine finfish in Japan. Aquaculture, Vol. 200, No. 1-2, pp. 203-222. https://doi.org/10.1016/S0044-8486(01)00701-3
  26. Theilacker, G. H. and M. F. McMaster(1971), Mass culture of the rotifer Brachionus plicatilis and its evaluation as a food for larval anchovies, Marine Biology, Vol. 10, pp. 183-188. https://doi.org/10.1007/BF00354834
  27. Tomoda, T., M. Koiso and Y. Shima(2007), Dietary value of marine rotifer Brachionus plicatilis after enrichment produced by batch culture and extensive continuous culture methods, Nippon Suisan Gakkaishi, Vol. 73, No. 3, pp. 505-507 (in Japanese). https://doi.org/10.2331/suisan.73.505
  28. Walker, K. F.(1981), A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis Muller 1786, Hydrobiologia, Vol. 81, No. 1, pp. 159-167. https://doi.org/10.1007/BF00048713
  29. Watanabe, T.(1993), Importance of docosahexaenoic acid in marine larval fish, Journal of the World Aquaculture Society, Vol. 24, No. 2, pp. 152-161. https://doi.org/10.1111/j.1749-7345.1993.tb00004.x
  30. Yoshimatsu, T., H. Imoto, M. Hayashi, K. Toda and K. Yoshimura(1997), Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density, Hydrobiologia, Vol. 358, No. 1-3, pp. 153-157. https://doi.org/10.1023/A:1003161214088

피인용 문헌

  1. 다양한 Rotifer (Brachionus plicatilis) 영양강화가 태평양 대구(Gadus macrocephalus) 자어의 성장 및 지방산 조성에 미치는 영향 vol.53, pp.4, 2016, https://doi.org/10.5657/kfas.2020.0530
  2. Effects of light intensity and photoperiod on survival and growth of walleye pollock (Gadus chalcogrammus) larvae vol.33, pp.4, 2016, https://doi.org/10.13000/jfmse.2021.8.33.4.859