References
- R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, United States, 1974.
- A. J. Bell, The co-information lattice, in: 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 2003, 921-926.
- H. E. Bell and L. C. Kappe, Rings in wich derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346. https://doi.org/10.1007/BF01953371
- H. E. Bell and G. Mason, On derivations in near-rings and near-fields, North-Holland Math. Studies 137 (1987), 31-35. https://doi.org/10.1016/S0304-0208(08)72283-7
- G. Birkhoof, Lattice Theory, American Mathematical Society Colloquium, 1940.
- C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, Int. J. Human-Computers Studies 45 (1996), 553-558. https://doi.org/10.1006/ijhc.1996.0067
- Y. Ceven and M. A. Ozturk, On the trace of a permuting tri-additive mapping in left s-unital rings, International Journal of Pure and Applied Mathematics 23 (2005), no. 4, 465-474.
- Y. Ceven and M. A. Ozturk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008), no. 4, 701-707. https://doi.org/10.4134/BKMS.2008.45.4.701
- Y. Ceven, Symmetric bi-derivations of Lattices, Quaestiones Mathematicae 32 (2009), no. 2, 1-5. https://doi.org/10.2989/QM.2009.32.1.1.703
- C. Degang, Z. Wenxiu, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete distributive lattice with applications to generalized rough sets, Informat. Sci. 176 (2006), 1829-1848. https://doi.org/10.1016/j.ins.2005.05.009
- L. Ferrari, On derivations of lattices, Pure Math. Appl. 12 (2001), no. 4, 365-382.
- A. Honda and M. Grabish, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006), 3472-3489. https://doi.org/10.1016/j.ins.2006.02.011
- Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176. https://doi.org/10.1016/j.ins.2003.03.001
- F. Karacal, On the direct decomposability of strong negations and S-implication operators on product lattices, Informat. Sci. 176 (2006), 3011-3025. https://doi.org/10.1016/j.ins.2005.12.010
- D. Ozden and M. A. Ozturk, Permuting tri-derivations in prime and semi-prime gamma rings, Kyungpook Math. J. 46 (2006), 153-167.
- M. A. Ozturk, Permuting Tri-derivations in Prime and Semi-prime Rings, East Asian Math. J. 15 (1999), no. 2, 177-190.
- M. A. Ozturk, Y. C even, and Y. B. Jun, Generalized derivations of BCI-algebras, Honam Math. J. 31 (2009), no. 4, 601-609. https://doi.org/10.5831/HMJ.2009.31.4.601
- M. A. Ozturk, H. Yazarli and K. H. Kim, Permuting tri-derivations in lattices, Quaestiones Mathematicae 32 (2009), no. 3, 415-425. https://doi.org/10.2989/QM.2009.32.3.10.911
- E. Posner, Derivations in prime rings, Proc. Am. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
- R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls in: Proceedings of the 4th European Symposium on Research in Computer Security, Rome, Italy, 1996, 65-79.
- G. Szasz, Derivations of lattices, Acta Sci. Math. (Szeged) 37 (1975), 149-154.
- X. L. Xin, T. Y. Li, and J. H. Lu, On derivations of lattices, Information Sciences 178 (2008), no. 2, 307-316. https://doi.org/10.1016/j.ins.2007.08.018
- H. Yazarli, M. A. Ozturk, and Y. B. Jun, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ank. Series A1 54 (2005), no. 1, 1-8.
- J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. of Mathematics and Mathematical Sciences, 2005, 1675-1684.