DOI QR코드

DOI QR Code

Analysis and Prediction of Bicycle Traffic Accidents in Korea

자전거 교통 사고 현황 및 예측 분석

  • Choi, Seunghee (Department of Computer and Communications Engineering, Kangwon National University) ;
  • Lee, Goo Yeon (Department of Computer and Communications Engineering, Kangwon National University)
  • 최승희 (강원대학교 컴퓨터정보통신공학과) ;
  • 이구연 (강원대학교 컴퓨터정보통신공학과)
  • Received : 2016.03.02
  • Accepted : 2016.07.08
  • Published : 2016.09.25

Abstract

According to the promoting policy for bicycle riding, the bicycle road infrastructure in Korea has been widely established. As the number of bicycle rider increases, bicycle traffic accidents also increase year after year. In this paper, we analyze bicycle traffic accident data from 2007 to 2014 which is provided by Road Traffic Authority and present statistical results of bicycle traffic accidents. And also regression analysis is applied to predict the number of daily traffic accidents in Seoul using ASOS(Automated Synoptic Observing System) climate data observed in the Seoul sector which are provided by Korea Meteorological Administration. In addition, decision tree analysis techniques are used to forecast the level of traffic accidents severity. In the analytic results of this research, we expect that it will be helpful to establish the collective policy of bicycle accident data and protective strategy in order to reduce the number of bicycle accidents.

국내의 자전거 이용 활성화 정책에 따라 자전거 노선 및 자전거 교통 인프라가 계속 확장되는 추세이다. 자전거 인구가 증가함에 따라 해마다 자전거 교통사고도 증가하고 있다. 본 논문은 도로교통공단의 2007년부터 2014년까지의 자전거 교통사고 데이터를 분석하여 교통사고 현황에 대한 통계량을 제시하였다. 또한 기상청의 종관기상관측소 서울지점의 기상 정보를 활용하여 서울지역의 일별 교통사고 발생 건수에 대한 회귀분석을 실시하였다. 그리고 의사결정 트리 분석 방법을 적용하여 교통사고 정보의 교통사고 심각도를 분류 예측하였다. 이러한 기술 분석 및 예측 분석을 통해 향후 자전거 교통사고 예방을 위한 자전거 교통사고 데이터 수집 정책 및 사고 예방 대책 수립에 도움이 되고자 한다.

Keywords

References

  1. Statistics Korea, e-National Index, Departmental Index, "Bicycle Road Status', Available: http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2854
  2. Road Traffic Authority, 2014 The factor analysis of traffic accident-characteristic analysis of bicycle traffic accident-, Samyoungmunwhasa, 2014.
  3. Ministry of the Interior, Infrastructure improvement plan based on the analysis of bicycle accident type(2013), [Online]. Available: http://www.moi.go.kr/frt/bbs/type001/commonSele ctBoardArticle.do?bbsId=BBSMSTR_000000000012&nttId=44900 (downloaded 2015, Oct.. 1)
  4. H. Cho, "A study on the Influence factors of bicycle accident and the awareness of bicycle users about the risk of accidents", Pusan National University, Master's thesis, 2014.
  5. C. Hong, and M. Kim, "Statistical analysis and its application of bicycle accidents", Journal of the Korean data & information science society, Vol. 21, No.6, pp. 1081-1090, 2010.
  6. C. Nam, "Development of Accident Prediction Model and Suggestion of Safety Improvements on Bicycle Transportation", Chonnam National University, Ph.D. Dissertation, 2013.
  7. S. Jung, "Building a Risk Model of Mountain Bike Accident based on Data Mining Technique", Chungbuk National University, Master's thesis, 2011.
  8. J. Scholtz, A. Wendelborn, K. Maciunas, "Ontology layering in an early warning sensor (EWS) bicycle accident prevention system", Proc. of the Connected Vehicles and Expo (ICCVE), 2014 International Conference, pp. 919-924, 2014.
  9. Korea Meteorological Administration, "Korea Climate Data Open Portal", Available: https://data.kma.go.kr (downloaded 2016, Apr., 26)
  10. Statistics Korea, "Korean Statistical Information Service", Available: http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parmTabId=M_01_01
  11. BYPAD consortium, "BYPAD in one Minute", Available:http://www.bypad.org/cms_site.phtml?id=551&sprache=en

Cited by

  1. Analysis of Neighborhood Environmental Factors Affecting Bicycle Accidents and Accidental Severity in Seoul, Korea vol.53, pp.7, 2018, https://doi.org/10.17208/jkpa.2018.12.53.7.49