DOI QR코드

DOI QR Code

4-Level Balanced Modulation Code for the Mitigation of Two-Dimensional Intersymbol Interference in Holographic Data-Storage Systems

홀로그래픽 데이터 저장장치에서 2차원 심볼 간 간섭을 완화하기 위한 4-레벨 균형 변조부호

  • Park, Keunhwan (School of Electronics Engineering, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 박근환 (숭실대학교 전자정보공학) ;
  • 이재진 (숭실대학교 전자정보공학)
  • Received : 2016.08.12
  • Accepted : 2016.08.31
  • Published : 2016.09.25

Abstract

In the holographic data storage system (HDSS), the data regarding the volume of a storage medium are recorded and read by the page, and the transmission rate and storage capacity can be increased because of two-dimensional, page-oriented data processing; furthermore, the multi-level HDSS can store more than one bit per pixel. For this same reason, however, and unlike conventional data-storage systems, the HDSS is hampered by two-dimensional (2D) intersymbol interference (ISI) and interpage interference (IPI). Progress regarding the published papers on 2D ISI, which is more severe in the multi-level HDSS, continues; however, mitigation of both 2D ISI and IPI in terms of the multi-level HDSS has not yet been studied. In this paper, we therefore propose a 4-level balanced-modulation code that simultaneously mitigates 2D ISI and IPI.

홀로그래픽 데이터 저장 장치(HDSS)는 페이지 단위로 저장 매체의 체적에 데이터를 저장 및 판독하고 2차원으로 데이터를 처리하기 때문에 데이터 전송 속도 및 저장 용량이 증가한다. 게다가, 멀티레벨 HDSS는 한 픽셀에 한 비트이상을 저장할 수 있다. 하지만 2차원으로 페이지를 처리하므로 기존의 데이터 저장 시스템과 달리 2차원으로 인접한 심볼 간 간섭(ISI) 및 인접 페이지 간 간섭(IPI)가 발생한다. 기존에 발표된 논문들은 멀티레벨 HDSS 환경에서 2차원 ISI 완화에 관한 연구에 초점을 두었지만 멀티레벨 HDSS 환경에서 2차원 ISI와 IPI를 동시에 완화하는 연구는 진행되지 않았다. 본 논문에서는 2차원 ISI 및 IPI를 동시에 완화하는 4-레벨 균형 변조부호를 제안하였다.

Keywords

References

  1. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE, Vol. 92, no. 8, pp. 1231-1280, August. 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. S. Kim and J. Lee, "A Simple 2/3 Modulation Code for Multi-Level Holographic Data Storage," Jpn. J. Appl Phys, Vol. 52, no. 9 pp. 09LE04, April 2013. https://doi.org/10.7567/JJAP.52.09LE04
  3. S. Jeong and J. Lee, "Multilevel Modulation Codes for Holographic Data Storage," Journal of The Institute of Electronics and Information Engineers, Vol. 52, no. 6, pp. 1581-1586, September 2015.
  4. G. Burr, G. Barking, H. Coufal, J. Hoffnagle, C. Jefferson, and M. Neifeld, "Gray-scale data pages for digital holographic data storage," Opt. Lett, Vol. 23, no. 15, pp. 1218, August. 1998. https://doi.org/10.1364/OL.23.001218
  5. B. King, G. Burr, and M. Neifeld, "Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage," Appl. Opt., Vol. 42, no. 14, pp. 2546-2559, May. 2003. https://doi.org/10.1364/AO.42.002546
  6. K. Park, B. Kim and J. Lee, "A 6/9 Four-Ary Modulation Code for Four-Level Holographic Data Storage," Jpn. J. Appl Phys, Vol. 52, no. 9 pp. 09LE05, April 2013. https://doi.org/10.7567/JJAP.52.09LE05
  7. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Gunter, R. M. Macfalane and G. T. Sincerbox, "Pixel-matched holographic data storage with megabit pages," Opt. Lett, Vol. 22, no. 19, pp. 1509, August. 1997. https://doi.org/10.1364/OL.22.001509
  8. S. Jeong and J. Lee, "4-level 3/4 Modulation Code for Holographic Data Storage," Journal of The Institute of Electronics and Information Engineers, Vol. 52, no. 9, pp. 8-12, September 2015. https://doi.org/10.5573/ieie.2015.52.9.008
  9. N. Kim and J. Lee, "Two-dimensional codes for holographic data storage systems," J. KICS, Vol. 31, no. 11, pp. 1037-1043, November. 2006.
  10. D. Park and J. Lee, "Modeling of the inter-page interference on the holographic data storage systems," J. KICS, Vol. 35, no. 7, pp. 581-586, Jul. 2010
  11. J. Kim and J. Lee, "Two-dimensional 5:8 modulation code for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, pp.03A031, Mar. 2009.
  12. J. Kim and J. Lee, "Performance of Two-Dimensional Soft Output Viterbi Algorithm for Holographic Data Storage," J. KICS, Vol. 37A, no. 10 pp. 815-820, October 2012.
  13. J. Kim, J. Wee, and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Jpn. J. Appl. Phys., Vol. 49, no. 8, pp. 08KB04, August. 2010.
  14. J. Lee and J. Lee, "4-level Error Correcting Modulation Codes for Holographic Data Storage System," J. KICS, Vol. 39, no. 10 pp. 610-612, September 2014.
  15. K. Yang, J. Kim and J. Lee, "Mis-alignment Channel Performance of Error Correcting 4/6 Modulation Codes for Holographic Data Storage," J. KICS, Vol. 35, no. 12 pp. 971-976, December 2010.
  16. J. Kim and J. Lee, "Iterative two-dimensional soft output Viterbi algorithm for patterned media," IEEE, Trans. Magn., Vol. 47, no. 3, pp. 594-597, March 2011. https://doi.org/10.1109/TMAG.2010.2100371
  17. B. Kim and J. Lee, "2-D Non-Isolated Pixel 6/8 Modulation Code," IEEE, Trans. Magn., Vol. 50, no. 7, pp. 3501404, Jul 2014.
  18. J. Kim and J. Lee, "Modified two-dimensional soft output Viterbi algorithm for holographic data storage," Jpn. J. Appl. Phys., Vol. 49, no. 8, pp. 08KB03-1-08KB03-5, 2010.
  19. N. Kim, J. Lee, and J. Lee, "Rate 5/9 two-dimensional pseudo-balanced code for holographic data storage systems," Jpn. J. Appl. Phys., Vol. 45, no. 2B, pp. 1293-1296, 2006. https://doi.org/10.1143/JJAP.45.1293