DERIVATIONS OF $M V$-ALGEBRAS FROM HYPER $M V$-ALGEBRAS

M. Hamidi* and R. A. Borzooei

Abstract

In this paper, we investigate some new results in $M V$ algebras and (strong) hyper $M V$-algebras. We show that for any infinite countable set M, we can construct an $M V$-algebra and a strong hyper $M V$-algebra on M. Specially, for any infinite totally bounded set, we can construct a strong hyper $M V$-algebra on it. Then by considering the concept of fundamental relation on hyper $M V$-algebras, we define the notion of fundamental $M V$-algebra and prove that any $M V$-algebra is a fundamental $M V$-algebra. In practical, we show that any infinite countable $M V$-algebra is a fundamental $M V$-algebra of itself, but it is not correct for finite $M V$ algebras.

1. Introduction

$M V$-algebras introduced by C. C. Chang [2] in 1958 provide an algebraic proof of completeness theorem of infinite valued Lukasewicz propositional calculus. The hyper structure theory was introduced by F. Marty [12] at the 8th congress of Scandinavian Mathematicians in 1934. Since then many researches have worked in this areas. Recently in [5], Sh. Ghorbani, et al. applied the hyperstructure to $M V$-algebras and introduced the concept of a hyper $M V$-algebra which is a generalization of an $M V$-algebra and investigated some related results. Based on $[6,7]$, L. Torkzadeh , et al. [15], discussed hyper $M V$-ideals in hyper $M V$-algebras. In [13, 14], Davvaz et al. are defined the concept of fundamental relation on hyper $M V$-algebras. Now, in this paper, we prove that any $M V$-algebra is a fundamental $M V$-algebra. But, we show that any finite $M V$-algebra is not a fundamental $M V$-algebra of itself.

[^0]
2. Preliminaries

Definition 2.1. [3, 13] Let M be a set with a binary operation " \oplus ", a unary operation " $*$ " and a constant " 0 ". Then, $(M, \oplus, *, 0)$ is called an $M V$-algebra if it satisfies the conditions (MV1): $x \oplus(y \oplus z)=(x \oplus y) \oplus z$, (MV2): $x \oplus y=y \oplus x,(M V 3): x \oplus 0=x,(M V 4):\left(x^{*}\right)^{*}=x,(M V 5):$ $x \oplus 0^{*}=0^{*},(M V 6):\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$. Let $(M, \oplus, *, 0)$ be an $M V$-algebra. For any $x, y \in M$, a relation " \lesssim which is defined by $x \lesssim y \Longleftrightarrow x^{*} \oplus y=0^{*}$ is a partial order and is called the natural order (See $[3])$. We call $(M, \oplus, *, 0, \lesssim)$ is an $M V$-natural partial ordered and an MV-natural total ordered is an MV-chain. Let $(M, \oplus, *, 0)$ and $\left(M^{\prime}, \oplus^{\prime}, *^{\prime}, 0^{\prime}\right)$ be two $M V$-algebras. A mapping $f: M \rightarrow M^{\prime}$ is called a homomorphism from M into M^{\prime}, if for any $x, y \in X, f(x \oplus y)=$ $f(x) \oplus^{\prime} f(y), f(0)=0^{\prime}$ and $f\left(x^{*}\right)=(f(x))^{*^{\prime}}$. The homomorphism f, is called an isomorphism, if it is onto and one to one.

Definition 2.2. [4] Let H be a nonempty set and $P^{*}(H)$ be the family of all nonempty subsets of H. Functions $*_{i_{H}}: H \times H \longrightarrow P^{*}(H)$, where $i \in\{1,2, \ldots, n\}$, are called binary hyperoperations. For all $x, y \in$ $H, *_{i_{H}}(x, y)$ is called the hyperproduct of x and y and structure $\left(H, *_{H}\right)$ is called a hypergroupoid. For any two nonempty subsets A and B of hypergropoid H and $x \in H$, we define $A *_{H} B=\bigcup_{a \in A, b \in B} a *_{H} b$,
$A *_{H} x=\bigcup_{a \in A} a *_{H} x$ and $x *_{H} B=\bigcup_{b \in B} x *_{H} b$.
Definition 2.3. $[13,14]$ Let M be a non-empty set, endowed with a binary hyperoperation " \oplus ", a unary operation "*" and a constant "0". Then, $(M, \oplus, *, 0)$ is called a hyper $M V$-algebra if satisfies the following axioms, $(H M V 1): x \oplus(y \oplus z)=(x \oplus y) \oplus z,(H M V 2): x \oplus y=y \oplus x$, (HMV3): $\left(x^{*}\right)^{*}=x,(H M V 4):\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x,(H M V 5):$ $0^{*} \in x \oplus 0^{*},(H M V 6): x \in x \oplus 0$, and we say that hyper $M V$-algebra M, is a strong hyper MV-algebra, if it satisfies the axiom (HMV7): if $x \ll y$ and $y \ll x$, then $x=y$, for all $x, y, z \in M$, where $x \ll y$ is defined by $0^{*} \in x^{*} \oplus y$. For every subsets A and B of M, we define $A \ll B \Longleftrightarrow \exists a \in A$ and $\exists b \in B$ such that $a \ll b$ and $A^{*}=\left\{a^{*} \mid a \in A\right\}$. Let $(M, \oplus, *, 0)$ be a hyper $M V$-algebra and R be an equivalence relation on M. If A and B are nonempty subsets of M, then $A \bar{R} B$ means that for all $a \in A$, there exists $b \in B$ such that $a R b$ and for all $b^{\prime} \in B$, there exists $a^{\prime} \in A$ such that $b^{\prime} R a^{\prime}, A \overline{\bar{R}} B$ means that for all $a \in A$, and $b \in B$, we have $a R b, R$ is called regular on the right (on the left) if for
all $x \in M$, from $a R b$, it follows that $(a \circ x) \bar{R}(b \circ x)((x \circ a) \bar{R}(x \circ b)), R$ is called strongly regular on the right (on the left) if for all $x \in M$, from $a R b$, it follows that $(a \circ x) \overline{\bar{R}}(b \circ x)((x \circ a) \overline{\bar{R}}(x \circ b)), R$ is called regular (strongly regular) if it is regular (strongly regular) on the right and on the left, R is called good if $(a \circ b) R 0$ and $(b \circ a) R 0$ imply $a R b$, for all $a, b \in M$.

A totally ordered set $(X, 0)$ is said to be well ordered (or have a well-founded order) if every nonempty subset of X, has a least element. Every finite totally ordered set is well ordered.

Theorem 2.4. [10] (Zermelo's Well-Ordering Theorem) Every set can be well-ordered.

Lemma 2.5. [8] Let X be an infinite set. Then for any set $\{a, b\}$, we have $|X \times\{a, b\}|=|X|$.

Theorem 2.6. [1] Let X and Y be two sets such that $|X|=|Y|$. If $(Y, \leq, 0)$ is a well-ordered set, then there exists a binary order relation $" \leq "$ on X and $x_{0} \in X$, such that $\left(X, \leq, x_{0}\right)$ is a well-ordered set.

3. Constructing of Some $M V$-algebras

In this section, we get some results that we need in the next sections. Specially, we construct an $M V$-algebra and a strong hyper $M V$-algebra from a nonempty countable set and any totally ordered set with maximum element. We show that the $M V$-algebras and the hyper $M V$ algebras with the same cardinal are isomorphism.

Lemma 3.1. Let X and Y be two sets such that $|X|=|Y|$. If $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ is an $M V$-algebra, then there exist a binary operation $" \oplus_{Y} "$, a unary operation " $*_{Y} "$ and constant $" 0_{Y} "$ on Y, such that $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ is an $M V$-algebra and $\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \cong\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$.

Proof. Since $|X|=|Y|$, then there exists a bijection $\varphi: X \longrightarrow Y$. For any $y_{1}, y_{2} \in Y$, we define the binary operation " \oplus_{Y} " on Y by, $y_{1} \oplus_{Y} y_{2}=\varphi\left(x_{1} \oplus_{X} x_{2}\right)$, where $y_{1}=\varphi\left(x_{1}\right), y_{2}=\varphi\left(x_{2}\right)$ and $x_{1}, x_{2} \in X$. It is easy to show that \oplus_{Y} is well-defined. Moreover, for any $y \in Y$ we define the unary operation " $*$ " as $y^{*}=\varphi\left(x^{*}\right)$, where $x \in X, y=\varphi(x)$ and $0_{Y}=\varphi\left(0_{X}\right)$. Since φ is a bijection, then the unary operation $*$ is welldefined. Now, by some modification we can show that $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ is an $M V$-algebra. In the follow, we define the map $\theta:\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \longrightarrow$ $\left(Y, \oplus_{Y}, *_{Y}, \varphi\left(0_{X}^{*}\right)\right)$ by $\theta(x)=\varphi(x)$. Since φ is a bijection then θ is a
bijection. Now, it is easy to see that θ is a homomorphism and so it is an isomorphism.

Lemma 3.2. For any $k \in \mathbb{N}$, we can construct an $M V$-algebra on $\mathbb{W}_{k}=\{0,1,2,3, \ldots, k-1\}$, which is a chain.

Proof. Let $k \in \mathbb{N}$. We define the binary operation " \odot " and the unary operation " $*$ ", on \mathbb{W}_{k} as follows:

$$
x \odot y=\left\{\begin{array}{ll}
k-1 & , \text { if } x+y \geq k-1 \\
x+y & , \text { otherwise }
\end{array} \quad \text { and } \quad x^{*}=k-(x+1)\right.
$$

Clearly, 0 is the smallest element in $\mathbb{W}_{k}, k-1=\max \left(\mathbb{W}_{k}\right)$ and for any $x \in \mathbb{W}_{k},\left(x^{*}\right)^{*}=x$. First, we show that $" \odot "$ is well-defined on \mathbb{W}_{k}. Let $x=x^{\prime}$ and $y=y^{\prime}$. If $x+y \geq k-1$ then $x^{\prime}+y^{\prime} \geq k-1$ and so $x \odot y=k-1=x^{\prime} \odot y^{\prime}$. Moreover, if $x+y<k-1$ then $x^{\prime}+y^{\prime}<k-1$ and so $x \odot y=x+y=x^{\prime}+y^{\prime}=x^{\prime} \odot y^{\prime}$. Now, we show that $\left(\mathbb{W}_{k}, \odot, *, 0\right)$ is an $M V$-algebra. Let $x, y, z \in \mathbb{W}_{k}$. Then,
(MV1): Case 1: $x+y \geq k-1$. Then $x+(y+z)=(x+y)+z \geq k-1$. Case 2: $x+y<k-1$. If $(x+y)+z<k-1$, then $x+(y+z)=(x+y)+z<$ $k-1$ and if $(x+y)+z \geq k-1$, then $x+(y+z)=(x+y)+z \geq k-1$. Since in any cases, $(x+y)+z=x+(y+z)$, then $(x \odot y) \odot z=x \odot(y \odot z)$.
(MV2): Since $x+y=y+x$, then $x \odot y=y \odot x$.
(MV3): By hypothesis, $x \odot 0=x$.
(MV4): By hypothesis, $0^{*}=k-1,(k-1)^{*}=0$ and $\left(x^{*}\right)^{*}=x$.
$\overline{\text { (MV5): }}$ By hypothesis, $x \odot 0^{*}=x \odot(k-1)=k-1=0^{*}$.
(MV6): Case 1: $y<x$. Then, clearly $k-(x+1)+y<k-1$ and
$\left(x^{*} \odot y\right)^{*} \odot y=((k-(x+1)) \odot y)^{*} \odot y=(k-(x+1)+y)^{*} \odot y=(x-y) \odot y=x$
Moreover, in this case we have $k-(1+y)+x \geq(k-1)$ and so

$$
\left(y^{*} \odot x\right)^{*} \odot x=((k-(1+y)) \odot x)^{*} \odot x=(k-1)^{*} \odot x=0 \odot x=x
$$

Case 2: $y>x$. Then, clearly $k-(x+1)+y \geq k-1$ and

$$
\left(x^{*} \odot y\right)^{*} \odot y=((k-(x+1)) \odot y)^{*} \odot y=(k-1)^{*} \odot y=0 \odot y=y
$$

Moreover, in this case we have $k-(y+1)+x<k-1$ and so $\left(y^{*} \odot x\right)^{*} \odot x=((k-(y+1)) \odot x)^{*} \odot x=(k-(y+1)+x)^{*} \odot x=(y-x) \odot x=y$
Case 3: $y=x$. Then, clearly $\left(x^{*} \odot y\right)^{*} \odot y=\left(y^{*} \odot x\right)^{*} \odot x$. Therefore, $\left(\mathbb{W}_{k}, \odot, *, 0\right)$ is an $M V$-algebra.
Now, for any $x, y \in \mathbb{W}_{k}, x \lesssim y$ if and only if $x^{*} \odot y=k-1$ if and only if $(k-(x+1)) \odot y=k-1$ if and only if $(k-(x+1))+y \geq k-1$ if and only if $x \leq y$. Therefore, $\left(\mathbb{W}_{k}, \odot, *, 0, \leq\right)$ is an $M V$-chain.

Theorem 3.3. Let X be a finite set. Then there exist a binary operation " \oplus_{X} " and unary operation " $*_{X}$ " and constant " 0_{X} " on X, such that $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$, is an $M V$-algebra.

Proof. Let X be a finite set. Then, there exists $k \in \mathbb{W}$ such that $|X|=\left|\mathbb{W}_{k}\right|$. Now, since by Lemma $3.2,\left(\mathbb{W}_{k}, \odot, *, 0\right)$ is an $M V$-algebra, then by Lemma 3.1, there exist a binary operation " \oplus_{X} ", a unary operation $" *_{X} "$ and constant $" 0_{X} "$ on X, such that $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$, is an $M V$-algebra.

Lemma 3.4. Let $1<n \in \mathbb{Q}$. Then there exist a binary operation $" \odot$ " and a unary operation "*" on $E=\mathbb{Q} \cap[1 n]$, such that $(E, \odot, *, 1)$ is an $M V$-algebra.

Proof. For any $1<n \in E$, we define the binary operation $" \odot$ " and the unary operation $" *$ " on E as follows:

$$
x \odot y=\left\{\begin{array}{ll}
n & , \text { if } x y \geq n \\
x y & , \text { otherwise }
\end{array} \quad \text { and } \quad x^{*}=\frac{n}{x}\right.
$$

Then 1 is the smallest element in $E, n=\max (E)$ and for any $x \in E$, $\left(x^{*}\right)^{*}=x$. First, we show that " \odot " is well-defined on E. Let $x=x_{1}$ and $y=y_{1}$. If $x y \geq n$ then $x_{1} y_{1} \geq n$ and so $x \odot y=n=x_{1} \odot y_{1}$. Moreover, if $x y<n$ then $x_{1} y_{1}<n$ and so $x \odot y=x y=x_{1} y_{1}=x_{1} \odot y_{1}$. Clearly "*" is well-defined. Now, we show that $(E, \odot, *, 1)$ is an $M V$-algebra. Let $x, y, z \in E$. Then,
(MV1): If $x y \geq n$, since $z \geq 1$, then $x(y z)=(x y) z \geq n$. Now, let $x y<n$. If $(x y) z<n$, then $x(y z)=(x y) z<n$ and if $(x y) z \geq n$, then $x(y z)=(x y) z \geq n$. Since in any cases, $(x y) z=x(y z)$, then $(x \odot y) \odot z=x \odot(y \odot z)$.
(MV2): Since $x y=y x$, then $x \odot y=y \odot x$.
$\overline{(\mathrm{MV} 3)}:$ By hypothesis, $x \odot 1=x$.
(MV4): By hypothesis, $1^{*}=\frac{n}{1}=n, n^{*}=\frac{n}{n}=1$ and $\left(x^{*}\right)^{*}=x$.
(MV5): By hypothesis, $x \odot 1^{*}=x \odot n=n=1^{*}$.
$\overline{(\mathrm{MV} 6)}$: If $y<x$, then $\frac{n y}{x}<n$ and $\left(x^{*} \odot y\right)^{*} \odot y=\left(\frac{n}{x} \odot y\right)^{*} \odot y=$ $\overline{\left(\frac{n y}{x}\right)^{*}} \odot y=\frac{n}{\frac{n y}{x}} \odot y=\frac{x}{y} \odot y=x$. Moreover, in this case we have $\frac{n x}{y}>n$ and so $\left(y^{*} \odot x\right)^{*} \odot x=\left(\frac{n}{y} \odot x\right)^{*} \odot x=n^{*} \odot x=1 \odot x=x$. If $y>x$ then, $\frac{n y}{x}>n$ and $\left(x^{*} \odot y\right)^{*} \odot y=\left(\frac{n}{x} \odot y\right)^{*} \odot y=n^{*} \odot y=1 \odot y=y$.

Moreover, in this case we have $\frac{n x}{y}<n$ and so

$$
\left(y^{*} \odot x\right)^{*} \odot x=\left(\frac{n}{y} \odot x\right)^{*} \odot x=\left(\frac{n x}{y}\right)^{*} \odot x=\left(\frac{n}{\frac{n x}{y}}\right)^{*} \odot x=\frac{y}{x} \odot x=y
$$

If $y=x$, then clearly $\left(x^{*} \odot y\right)^{*} \odot y=\left(y^{*} \odot x\right)^{*} \odot x$. Therefore, $(E, \odot, *, 1)$ is an $M V$-algebra.

Theorem 3.5. Let X be an infinite countable set. Then there exists a binary operation " \oplus ", a unary operation " $*$ " and constant " 0 " on X, such that $(X, \oplus, *, 0)$ is an $M V$-algebra.

Proof. Let X be an infinite countable set. Since $E=\mathbb{Q} \cap[1 n]$ in Lemma 3.4, is an infinite countable $M V$-algebra, so $|X|=|E|$. Now, by Theorem 2.6 , there exist a bijection $\psi: E \longrightarrow X$, a binary relation $" \leq "$ and the smallest element $0=\psi(1)$ on X such that $(X, \leq, 0)$ is a totally ordered set and for any $t, s \in E$ we have

$$
\begin{equation*}
\psi(t) \leq \psi(s) \text { if and only if } t \leq s \tag{1}
\end{equation*}
$$

Hence, for the largest element $n \in E$ and for any $x \in X$, we have, $0=\psi(1) \leq x \leq \psi(n)$. For any $x, y \in X$, since ψ is onto, there exist $i, j \in E$ such that $x=\psi(i)$ and $y=\psi(j)$. Now, we define a binary operation " \oplus " and a unary operation " $*$ " on X as follows:

$$
x \oplus y=\left\{\begin{array}{ll}
\psi(n) & , \text { if } n \leq i \odot j \\
\psi(i \odot j) & , \text { otherwise }
\end{array} \text { and } x^{*}=\psi\left(i^{*}\right)=\psi\left(\frac{n}{i}\right)\right.
$$

that the operation " \odot " is defined in Lemma 3.4. First, we show that " \oplus " is well-defined. Let $x=x_{1}$ and $y=y_{1}$. Then there exist $i, i_{1}, j, j_{1} \in E$ such that $x=\psi(i), x_{1}=\psi\left(i_{1}\right), y=\psi(j), y_{1}=\psi\left(j_{1}\right)$. Since, ψ is a bijection, then $i=i_{1}$ and $j=j_{1}$. Now, if $i \odot j \geq n$ then $i_{1} \odot j_{1} \geq n$ and so $x \oplus y=\psi(n)=\psi\left(i_{1} \odot j_{1}\right)=x_{1} \oplus y_{1}$. Moreover, if $i \odot j<n$ then $i_{1} \odot j_{1}<n$ and so $x \oplus y=\psi(i \odot j)=\psi\left(i_{1} \odot j_{1}\right)=x_{1} \oplus y_{1}$. Since, ψ is a bijection, then clearly the operation "*" is well-defined. Now, since $\left(E, \odot,{ }^{*}, 1\right)$ is an $M V$-algebra, then we show that $(X, \oplus, *, 0)$ is an $M V$-algebra. For this, let $x=\psi(i), y=\psi(j), z=\psi(k) \in X$ where $i, j, k \in E$.
(MV1): If $i \odot j \geq n$, then by Lemma 3.4, for any $k \in E$ we have, $\bar{i} \odot(j \odot k)=(i \odot j) \odot k \geq n$.
Now, let $i \odot j<n$. If $(i \odot j) \odot k<n$, then $i \odot(j \odot k)=(i \odot j) \odot k<n$ and if $(i \odot j) \odot k=n$, then $i \odot(j \odot k)=(i \odot j) \odot k=n$. Since in any
cases, $(i \odot j) \odot k=i \odot(j \odot k)$, and ψ is a bijection, then $\psi((i \odot j) \odot k)=$ $\psi(i \odot(j \odot k))$ and so

$$
\begin{aligned}
(x \oplus y) \oplus z & =\psi(i \odot j) \oplus z=\psi((i \odot j) \odot k)=\psi(i \odot(j \odot k)) \\
& =x \oplus \psi(j \odot k)=x \oplus(y \oplus z)
\end{aligned}
$$

(MV2): Since $i \odot j=j \odot i$, then $x \oplus y=\psi(i \odot j)=\psi(j \odot i)=y \oplus x$. (M $\overline{\mathrm{V} 3): ~ S i n c e ~} i \odot 1 \leq n$ then, by hypothesis, $x \oplus \psi(1)=\psi(i) \oplus \psi(1)=$ $\overline{\psi(i \odot 1)}=\psi(i)=x$.
(MV4): By hypothesis, $\left(x^{*}\right)^{*}=\left(\psi\left(i^{*}\right)\right)^{*}=\left(\psi\left(\frac{n}{i}\right)\right)^{*}=\psi\left(\frac{n}{\frac{n}{i}}\right)=\psi(i)=x$.
(MV5): Since $i \odot n \geq n$ then, by hypothesis $x \oplus \psi(n)=\psi(i \odot n)=\psi(n)$. $\overline{\text { (MV6) }: ~ S i n c e ~}\left(i^{*} \odot j\right)^{*} \odot j=\left(j^{*} \odot i\right)^{*} \odot i$. We consider the following
 this case

$$
\begin{aligned}
\left(x^{*} \oplus y\right)^{*} \oplus y & =\left(\psi\left(i^{*} \odot j\right)\right)^{*} \oplus y=\psi\left(\left(i^{*} \odot j\right)^{*} \odot j\right)=\psi\left(\left(\frac{n}{i} \odot j\right)^{*} \odot j\right) \\
& =\psi\left(\frac{i}{j} \odot j\right)=\psi(i)
\end{aligned}
$$

Moreover, in this case we have $\frac{n \odot i}{j}>n$ and so

$$
\begin{aligned}
\left(y^{*} \oplus x\right)^{*} \oplus x & =\psi\left(\left(j^{*} \odot i\right)^{*}\right) \oplus x=\psi\left(\left(j^{*} \odot i\right)^{*} \odot i\right) \\
& \left.=\psi\left(\left(\frac{n}{j} \odot i\right)^{*} \odot i\right)=\psi\left(\left(\frac{n \odot j}{i}\right)^{*} \odot i\right)=\psi((n))^{*} \odot i\right) \\
& =\psi(1 \odot i)=\psi(i)
\end{aligned}
$$

Case 2: $y=\psi(j)>\psi(i)=x$. Then by (1), $j>i$ and so, clearly $\frac{n \odot j}{i}>n$ and

$$
\begin{aligned}
\left(x^{*} \oplus y\right)^{*} \oplus y & =\left(\psi\left(i^{*} \odot j\right)^{*}\right) \oplus y=\psi\left(\left(i^{*} \odot j\right)^{*} \odot j\right)=\psi\left(\left(\frac{n}{i} \odot j\right)^{*} \odot j\right) \\
& =\psi\left(\left(\frac{n \odot j}{i}\right)^{*} \odot j\right)=\psi\left(\left(n^{*}\right) \odot j\right)=\psi(1 \odot j)=\psi(j)
\end{aligned}
$$

Moreover, in this case we have $\frac{n i}{j}<n$ and so

$$
\begin{aligned}
\psi\left(\left(j^{*} \odot i\right)^{*} \odot i\right) & =\psi\left(\left(\frac{n}{j} \odot i\right)^{*} \odot i\right)=\psi\left(\left(\frac{n \odot i}{j}\right)^{*} \odot i\right)=\psi\left(\left(\frac{n}{\frac{n \odot i}{j}}\right) * \odot i\right. \\
& =\psi\left(\frac{j}{i} \odot i\right)=\psi(j)
\end{aligned}
$$

Therefore, $(X, \oplus, *, 0)$ is an $M V$-algebra.

Corollary 3.6. For any nonempty countable set X, we can construct an $M V$-algebra on X.

Proof. Let X be a nonempty countable set. Then, $|X|=|E|$, where $E=\mathbb{Q} \cap[1 n]$ is infinite countable set in Lemma 3.4, or there exists $k \in \mathbb{N}$ such that $|X|=\left|\mathbb{W}_{k}\right|$. Now, by the Theorems 3.3 and 3.5 , the proof is straightforward.

Theorem 3.7. Let X be an infinite set. If $\left(X, \oplus_{X}, 0_{x}, *_{X}\right)$ is an $M V-$ algebra, then for any set $\{a, b\}$, there exist a binary operation " \oplus ", a unary operation "*" and constant " 0 " on X such that ($X \times\{a, b\}, \oplus, *, 0$) is an $M V$-algebra and $\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \cong(X \times\{a, b\}, \oplus, *, 0)$

Proof. Since X is an infinite set, then by Lemma 2.5, $|X \times\{a, b\}|=$ $|X|$. Now, by Lemma 3.1, the proof is straightforward.

4. Constructing of Some (Strong) Hyper $M V$-algebras

Theorem 4.1. Let $\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ and $\left(N, \oplus_{N}, *_{N}, 0_{N}\right)$ be two $M V$-algebras. Then there exist a binary hyperoperation " \oplus ", a unary operation " *" and constant " 0 " on $M \times N$, such that ($M \times N, \oplus, *, 0$) is a hyper $M V$-algebra.

Proof. Let $\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ and $\left(N, \oplus_{N}, *_{N}, 0_{N}\right)$ be two $M V$-algebras. For any $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in M \times N$, we define the binary hyperoperation " \oplus " on $M \times N$ by, $\left(m_{1}, n_{1}\right) \oplus\left(m_{2}, n_{2}\right)=\left\{\left(m_{1} \oplus_{M} m_{2}, n_{1}\right),\left(m_{1} \oplus_{M}\right.\right.$ $\left.\left.m_{2}, n_{2}\right)\right\}$ and for any $(m, n) \in M \times N$, the unary operation "*" by, $(m, n)^{*}=*(m, n)=\left(*_{M}(m), *_{N}(n)\right)=\left(m^{*} M, n^{*}{ }_{N}\right)$ and constant $0=$ $\left(0_{M}, 0_{N}\right)$. First, we show that the hyperoperation " \oplus " is well defined. Let $\left(m_{1}, n_{1}\right)=\left(m_{1}^{\prime}, n_{1}^{\prime}\right)$ and $\left(m_{2}, n_{2}\right)=\left(m_{2}^{\prime}, n_{2}^{\prime}\right)$. Then,

$$
\begin{align*}
\left(m_{1}, n_{1}\right) \oplus\left(m_{2}, n_{2}\right) & =\left\{\left(m_{1} \oplus_{M} m_{2}, n_{1}\right),\left(m_{1} \oplus_{M} m_{2}, n_{2}\right)\right\} \tag{2}\\
& =\left\{\left(m_{1}^{\prime} \oplus_{M} m_{2}^{\prime}, n_{1}^{\prime}\right),\left(m_{1}^{\prime} \oplus_{M} m_{2}^{\prime}, n_{2}^{\prime}\right)\right\} \\
& =\left(m_{1}^{\prime}, n_{1}^{\prime}\right) \oplus\left(m_{2}^{\prime}, n_{2}^{\prime}\right)
\end{align*}
$$

Moreover, since $(m, n)=\left(m^{\prime}, n^{\prime}\right)$ implies that $*(m, n)=*\left(m^{\prime}, n^{\prime}\right)$ then $" * "$ is well-defined. Now, by some modifications we can show that ($M \times N, \oplus, *, 0$) is a hyper $M V$-algebra.

Theorem 4.2. Let ($M, \oplus_{M}, *_{M}, 0_{M}, \lesssim$) and ($N, \oplus_{N}, *_{N}, 0_{N}, \lesssim$) be two $M V$-chains. Then there exist a binary hyperoperation " \oplus ", a unary operation " *" and constant " 0 " on $M \times N$, such that ($M \times N, \oplus, *, 0$) is a strong hyper $M V$-algebra.

Proof. Let $\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ be an $M V$-algebra and $\left(N, \oplus_{N}, *_{N}, 0_{N}\right)$ be an $M V$-chain. Now, for any $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in M \times N$, we define the binary hyperoperation " \oplus " on $M \times N$ by, $\left(m_{1}, n_{1}\right) \oplus\left(m_{2}, n_{2}\right)=$ $\left\{\left(m_{1} \oplus_{M} m_{2}, n_{1}\right),\left(m_{1} \oplus_{M} m_{2}, n_{2}\right)\right\}$ and for any $(m, n) \in M \times N$, the unary operation "*" by, $(m, n)^{*}=*(m, n)=\left(*_{M}(m), *_{N}(n)\right)=\left(m^{*} M, n^{*}{ }_{N}\right)$ and we let constant $0=\left(0_{M}, 0_{N}\right)$. By Theorem 4.1, $(M \times N, \oplus, *, 0)$ is a hyper $M V$-algebra. Now, we define a binary relation " \ll on $M \times N$ by, $(x, y) \ll(z, w)$ if and only if $\left(0_{M}, 0_{N}\right)^{*} \in(x, y)^{*} \oplus(z, w)$. We show that for any $(x, y),(z, w) \in M \times N$, if $(x, y) \ll(z, w)$ then $x \lesssim z$ and $y \lesssim w$. For this, let $(x, y) \ll(z, w)$. Then by the hypothesis,

$$
\begin{aligned}
\left(0_{M}, 0_{N}\right)^{*} & =\left(0_{M}^{*}, 0_{N}^{*}\right) \in(x, y)^{*} \oplus(z, w)=\left(x^{*}{ }_{M}, y^{*}{ }_{N}\right) \oplus(z, w) \\
& =\left\{\left(x^{*} \oplus_{M} z, y^{*}{ }_{N}\right),\left(x^{*}{ }_{M} \oplus_{M} z, w\right)\right\}
\end{aligned}
$$

and so $\left(0_{M}^{*}, 0_{N}^{*}\right)=\left(x^{*} M_{M} \oplus_{M} z, y^{*}{ }_{N}\right)$ or $\left(0_{M}^{*}, 0_{N}^{*}\right)=\left(x^{*}{ }_{M} \oplus_{M} z, w\right)$. If $\left(0_{M}^{*}, 0_{N}^{*}\right)=\left(x^{*} M_{M} \oplus_{M} z, y^{*}{ }_{N}\right)$, then $y=0_{N}, x^{*} M \oplus_{M} z=0_{M}^{*}$. Now since $\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ is an $M V$-chain, then $x \lesssim z$ and $y=0_{N} \lesssim w$. If $\left(0_{M}^{*}, 0_{N}^{*}\right)=\left(x^{*} M \oplus_{M} z, w\right)$, then $w=0_{N}^{*}, x^{*} M \oplus_{M} z=0_{M}^{*}$. Now, since $\left(N, \oplus_{N}, *_{N}, 0_{N}\right)$ is an $M V$-chain, $x \lesssim z$ and $y \lesssim 0_{N}^{*}=w$. Hence, in any cases, we have, $x \lesssim z$ and $y \lesssim w$. Therefore, $(M \times N, \oplus, *, 0)$ is a strong hyper $M V$-algebra.

Lemma 4.3. Let X and Y be two sets such that $|X|=|Y|$. If $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ is a (strong) hyper $M V$-algebra, then there exist a binary hyperoperation " \oplus_{Y} ", a unary operation $" *_{Y} "$ and constant " 0_{Y} " on Y, such that $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ is a strong hyper $M V$-algebra and $\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \simeq\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$.

Proof. The proof is similar to the proof of Lemma 3.1, by some modifications.

Corollary 4.4. Let $\left(M, \oplus_{M}, *_{M}, 0_{M}, \lesssim\right)$ be an $M V$-chain. Then for any set $\{a, b\}$:
(i) there exist a binary hyperoperation " \oplus ", a unary operation " $*$ " and constant " 0 " on $M \times\{a, b\}$, such that $(M \times\{a, b\}, \oplus, *, 0)$ is a strong hyper $M V$-algebra.
(ii) If M is infinite, then there exist a binary hyperoperation " \odot ", a unary operation " *" and constant "0" on M, such that $(M, \odot, *, 0)$ is a strong hyper $M V$-algebra. and $(M \times\{a, b\}, \oplus, *, 0) \cong(M, \odot, *, 0)$.

Proof. (i) First, we define the partial relation " $\leq "$ on set $\{a, b\}$ by $\leq:=\{(a, a),(b, b),(a, b)\}$. Hence $(\{a, b\}, \leq)$ is a totally ordered set. Now we consider the following binary and unary operations :

$$
\begin{array}{c|cc}
\oplus & \mathrm{a} & \mathrm{~b} \\
\hline \mathrm{a} & \mathrm{a} & \mathrm{~b} \\
\hline \mathrm{~b} & \mathrm{~b} & \mathrm{~b}
\end{array} \text { and } \quad * \left\lvert\, \begin{array}{ll}
* & \mathrm{~b} \\
\hline & \mathrm{~b} \\
\mathrm{a}
\end{array}\right.
$$

Then clearly $(\{a, b\}, a, \oplus, *)$ is a the smallest nontrivial $M V$-chain. Now, we define the binary hyperoperation " \oplus " on $M \times\{a, b\}$ as follows:

$$
\left(m_{1}, t\right) \oplus\left(m_{2}, s\right)=\left\{\left(m_{1} \oplus_{M} m_{2}, t\right),\left(m_{1} \oplus_{M} m_{2}, s\right)\right\}
$$

Similar to proof of Theorem $4.2,(M \times\{a, b\}, \oplus, *, 0)$ is a strong hyper $M V$-algebra.
(ii) Since M is infinite set, then by Lemmas 2.5 and 4.3, there exist a binary hyperoperation " \odot ", a unary operation " $*$ " and constant " 0 " on M, such that $(M, \odot, *, 0)$ is a strong hyper $M V$-algebra. and $(M \times\{a, b\}, \oplus, *, 0) \cong(M, \odot, *, 0)$.

Theorem 4.5. Let $\left(X, \leq, x_{0}, y_{0}\right)$ be a totally ordered set with smallest element x_{0} and greatest element y_{0}. Then, there exist a binary hyperoperation " \odot " and a unary operation "*" on X, such that $\left(X, \odot, *, x_{0}\right)$ is a (strong) hyper MV-algebra.

Proof. Firstly, if $X=\left\{x_{0}, y_{0}\right\}$, then by the following tables:

\odot	x_{0}	y_{0}				
x_{0}	$\left\{x_{0}, y_{0}\right\}$	$\left\{x_{0}, y_{0}\right\}$				
y_{0}	$\left\{x_{0}, y_{0}\right\}$	$\left\{x_{0}, y_{0}\right\}$	and	$*$	x_{0}	y_{0}
:---:	:---:	:---:				
	y_{0}	x_{0}				

$\left(X, \odot, *, x_{0}\right)$ is a (strong) hyper $M V$-algebra. Now, let $|X| \geq 3$. For any $x, y \in X$, we define a binary hyperoperation " \odot " and unary operation $" * "$ as follows:

$$
x \odot y=\left\{\begin{array}{ll}
\left\{x_{0}, x, y\right\} & , \text { if } x \neq y \\
\left\{x_{0}, y_{0}, x\right\} & , \text { if } x=y
\end{array} \text { and } x^{*}= \begin{cases}y_{0} & , \text { if } x=x_{0} \\
x_{0} & , \text { if } x=y_{0} \\
x & , \text { otherwise }\end{cases}\right.
$$

First, we show " \odot " is well-defined. Let $x=x^{\prime}$ and $y=y^{\prime}$. If $x \neq y$, then, $x \odot y=\left\{x_{0}, x, y\right\}=\left\{x_{0}, x^{\prime}, y^{\prime}\right\}=x^{\prime} \odot y^{\prime}$. Now, let $x=y$. Then, $x \odot y=\left\{x_{0}, x, y_{0}\right\}=\left\{x_{0}, x^{\prime}, y_{0}\right\}=x^{\prime} \odot y^{\prime}$. Hence $" \odot "$ is well-defined. Clearly the unary operation "*" is well-defined, too. Now we show that $\left(X, \odot, *, x_{0}\right)$ is a hyper $M V$-algebra. Let $x, y, z \in X$. Then, (HMV1): Case 1: If $x=y=z$, then, $(x \odot y) \odot z=x \odot(y \odot z)$. Case 2: If $x=y \neq z$, then, $(x \odot y) \odot z=\left\{x_{0}, x, z, y_{0}\right\}=x \odot(y \odot z)$. Case 3: If $x \neq y=z$, then, $(x \odot y) \odot z=\left\{x_{0}, x, y, y_{0}\right\}=x \odot(y \odot z)$.

Case 4: If $x=z \neq y$, then, $(x \odot y) \odot z=\left\{x_{0}, x, y, y_{0}\right\}=x \odot(y \odot z)$.
Case 5: If $x \neq z \neq y$, then, $(x \odot y) \odot z=\left\{x_{0}, x, z, y\right\}=x \odot(y \odot z)$.
(HMV2): If $x \neq y$, then, $(x \odot y)=\left\{x_{0}, x, y\right\}=\left\{x_{0}, y, x\right\}=(y \odot x)$.
Now let $x=y$. Then, $(x \odot y)=\left\{x_{0}, x, y_{0}\right\}=(y \odot x)$.
(HMV3): By hypothesis $\left(x^{*}\right)^{*}=\left(x^{*}\right)=x$.
(HMV4): Case 1: If $x=x_{0}$ and $y=y_{0}$, then,

$$
\left(x^{*} \odot y\right)^{*} \odot y=\left\{y_{0}, x_{0}\right\}=(y \odot x) \odot x=\left(y^{*} \odot x\right)^{*} \odot x
$$

Case 2: If $x=x_{0}$ and $y \neq y_{0}$, then, $\left(x^{*} \odot y\right)^{*} \odot y=\left\{y_{0}, x_{0}, y\right\}=$ $(y \odot x) \odot x=\left(y^{*} \odot x\right)^{*} \odot x$.
Case 3: If $x \neq x_{0}$ and $y=y_{0}$, then, $\left(x^{*} \odot y\right)^{*} \odot y=\left\{y_{0}, x_{0}, x\right\}=$ $(y \odot x) \odot x=\left(y^{*} \odot x\right)^{*} \odot x$.
Case 4: If $x \neq x_{0}, y \neq y_{0}$ and $x \neq y$, then, $\left(x^{*} \odot y\right)^{*} \odot y=\left\{y_{0}, x_{0}, x, y\right\}=$ $(y \odot x) \odot x=\left(y^{*} \odot x\right)^{*} \odot x$.
(HMV5): By hypothesis $x \odot x_{0}=\left\{x, x_{0}\right\}$, then $x \in x \odot x_{0}$.
(HMV6): By hypothesis $x \odot x_{0}^{*}=\left\{x, x_{0}^{*}, x_{0}\right\}$ then $x_{0}^{*} \in x \odot x_{0}^{*}$.
Therefore, $\left(X, \odot, *, x_{0}\right)$ is a hyper $M V$-algebra.
(HMV7): If $x \ll y$ and $y \ll x$, then $y_{0} \in x^{*} \odot y$ and $y_{0} \in y^{*} \odot x$.
Since $\{x, y\} \nsubseteq\left\{x_{0}, y_{0}\right\}$, then $x^{*}=x$ and $y^{*}=y$. This implies that $y_{0} \in x \odot y=y \odot x$ and by hypothesis $x=y$.
Therefore, $\left(X, \odot, *, x_{0}\right)$ is a strong hyper $M V$-algebra.
Open Problem 4.6. We proved that any bonded totally ordered set can be a strong hyper $M V$-algebra. Let X be an infinite non bounded totally ordered set. Is there a binary hyperoperation $" \oplus$ ", a unary operation "*" and constant " 0 ", such that $(X, \oplus, *, 0)$ is a (strong) hyper $M V$-algebra?

5. Fundamental $M V$-algebras

In this section, by using the notion of fundamental relation, we define the concept of fundamental $M V$-algebra and we prove that any $M V$-algebra is a fundamental $M V$-algebra. Let $(M, \oplus, *, 0)$ be a hyper $M V$-algebra and A be a subset of M. Then with Now, in the following, the well-known idea of β^{*} relation on hyperstructure $[4,16,13]$ is transferred and applied to hyper $M V$-algebras.

Let $(M, \oplus, *, 0)$ be a hyper $M V$-algebra and $\mathcal{L}(A)$ denote the set of all finite combinations of elements A with \oplus and $*$. For example, $\mathcal{L}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{x_{1} \oplus x_{2}, x_{1}^{*} \oplus x_{2},\left(x_{1} \oplus x_{2},\right)^{*},\left(x_{1} \oplus x_{2},\right)^{*} \oplus x_{1}, \ldots\right\}$.

Then we set $\beta_{1}=\{(x, x) \mid x \in M\}$ and for every integer $n \geq 1, \beta_{n}$ is the relation defined as follows:

$$
x \beta_{n} y \Longleftrightarrow \exists\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X^{n}, \exists u \in \mathcal{L}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { s.t }\{x, y\} \subseteq u
$$

Obviously, for every $n \geq 1$, the relations β_{n} are symmetric, and the relation $\beta=\bigcup_{n \geq 1} \beta_{n}$ is reflexive and symmetric. Now, let β^{*} be the transitive closure of β. Then β^{*} is the smallest strongly regular equivalence relation on M, such that $\frac{M}{\beta^{*}}$ is an $M V$-algebra. (See [13]).

Theorem 5.1. [14] Let $\left(M_{i}, \oplus_{i}, *_{i}, 0_{i}\right)$ be a hyper $M V$-algebra and β_{i}^{*} be a fundamental relation on M_{i}, for any $i=1,2, \ldots, n$. Then,

$$
\frac{M_{1} \times M_{2} \times \ldots \times M_{n}}{\beta_{M_{1} \times M_{2} \times \ldots \times M_{n}}^{*}} \cong \frac{M_{1}}{\beta_{1}^{*}} \times \frac{M_{2}}{\beta_{2}^{*}} \times \ldots \times \frac{M_{n}}{\beta_{n}^{*}}
$$

Lemma 5.2. Let $\left(M, \oplus,^{*}, 0\right)$ be a hyper $M V$-algebra. Then for the fundamental relation β^{*} and for any $m \in M$, we have $\beta^{*}\left(m^{*}\right)=$ $\left(\beta^{*}(m)\right)^{*}$.

Proof. Let $m \in M$. For any $t \in M$, if $t \in \beta^{*}\left(m^{*}\right)$, then there exist $n \geq$ $1,\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in M^{n}$ and $u \in \mathcal{L}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $\left\{m^{*}, t\right\} \subseteq u$. Now, since $\left\{m, t^{*}\right\}=\left\{\left(m^{*}\right)^{*}, t^{*}\right\}=\left\{m^{*}, t\right\}^{*} \subseteq u^{*}$, then $t^{*} \in \beta^{*}(m)$ and so $\beta^{*}\left(m^{*}\right) \subseteq\left(\beta^{*}(m)\right)^{*}$. Let $t \in\left(\beta^{*}(m)\right)^{*}$. Then $t^{*} \in \beta^{*}(m)$ and there exist $n \geq 1,\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in M^{n}$ and $u \in \mathcal{L}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ that $\left\{m, t^{*}\right\} \subseteq$ u. Now, since $\left\{m^{*}, t\right\}=\left\{m^{*},\left(t^{*}\right)^{*}\right\}=\left\{m, t^{*}\right\}^{*} \subseteq u^{*}$, then $t \in \beta^{*}\left(m^{*}\right)$ and so $\left(\beta^{*}(m)\right)^{*} \subseteq \beta^{*}\left(m^{*}\right)$.

Lemma 5.3. Let $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ and $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be two hyper $M V$-algebras and $f:\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \rightarrow\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be a homomorphism. Then for any $x, y \in X, x \beta_{X}^{*} y$ implies that $f(x) \beta_{Y}^{*} f(y)$.

Proof. Let $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ and $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be two hyper $M V$ algebras and $x, y \in X$. Since $x \beta_{X}^{*} y$, then there exists $u \in \mathcal{L}(X)$, such that $\{x, y\} \subseteq u$. Now, for homomorphism $f:\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \rightarrow$ $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ we have $\{f(x), f(y)\}=f\{x, y\} \subseteq f(u) \in \mathcal{L}(Y)$. Therefore, $f(x) \beta_{Y}^{*} f(y)$.

Example 5.4. Let $\left(M_{1}, \oplus_{1}, *_{1}, 0\right)$ and $\left(M_{2}, \oplus_{2}, *_{2}, 0\right)$ be two hyper $M V$-algebras by the following tables:

\oplus_{1}	0	1				
0	$\{0,1\}$	$\{0,1\}$				
1	$\{0,1\}$	$\{0,1\}$,	$*_{1}$	0	1
:---:	:---:	:---:				
	1	0	,	\oplus_{2}	0	
:---:	:---:					
0	$\{0\}$					
b	$\{b\}$					
1	$\{b, 1\}$					
	$\{b, 1\}$					
	$\{b, 1\}$	and				

$$
\begin{array}{l|lll}
*_{2} & 0 & b & 1 \\
\hline & 1 & b & 0
\end{array} .
$$

Now, we define the map $f:\left(M_{2}, \oplus_{2}, *_{2}, 0\right) \longrightarrow\left(M_{1}, \oplus_{1}, *_{1}, 0\right)$ by $f(0)=$ 0 and $f(1)=f(b)=1$. Moreover, $\frac{\left(M_{1}, \oplus_{1}, *_{1}, 0\right)}{\beta^{*}}=\left\{\beta^{*}(0)=\{0,1\}, \beta^{*}(0)=\right.$ $\{0,1\}\}$ and $\frac{\left(M_{2}, \oplus_{2}, *_{2}, 0\right)}{\beta^{*}}=\left\{\beta^{*}(0)=\{0\}, \beta^{*}(b)=\{b, 1\}, \beta^{*}(b)=\{b, 1\}\right\}$. Clearly f is a homomorphism which is not injective and $f(b) \in \beta^{*}(f(1))$, but $b \notin \beta^{*}(1)$.

Lemma 5.5. Let $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ and $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be hyper $M V$ algebras and $f:\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \rightarrow\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be a monomorphism. Then for any $x, y \in X, f(x) \beta_{Y}^{*} f(y)$ implies that $x \beta_{X}^{*} y$.

Proof. For any $x, y \in X$, since $f(x) \beta_{Y}^{*} f(y)$, there exists $v \in \mathcal{L}(Y)$, such that $\{f(x), f(y)\} \subseteq v$. Now, for a monomorphism $f: X \rightarrow Y$ we have $\{x, y\}=\left\{f^{-1}(f(x)), f^{-1}(f(y))\right\}=f^{-1}\{f(x), f(y)\} \subseteq f^{-1}(v) \in U$. Therefore, $x v_{x}^{*} y$.

Lemma 5.6. Let $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ and $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be two hyper $M V$-algebras and $f:\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \rightarrow\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ be an isomorphism. Then for any $x, y \in X, x \beta_{X}^{*} y$ if and only if $f(x) \beta_{Y}^{*} f(y)$.

Proof. By Lemmas 5.3 and 5.5, the proof is straightforward.
Theorem 5.7. Let X and Y be two nonempty sets and $|X|=|Y|$. If $\left(X, \oplus_{X}, *_{X}, 0_{X}\right)$ is a (strong) hyper MV-algebra, then there exist a binary hyperoperation " \oplus_{Y} ", a unary operation " $*_{Y}$ " and constant " 0_{Y} " on Y, such that $\left(\frac{\left(X, \oplus_{X}, *_{X}, 0_{X}\right)}{\beta^{*}}, \bar{\sigma}\right) \cong\left(\frac{\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)}{\beta^{*}}, \bar{\sigma}\right)$.

Proof. Since $|X|=|Y|$, then by Lemma 4.3, there exist a binary hyperoperation " \oplus_{Y} ", a unary operation $" *_{Y} "$ and constant 0_{Y} on Y such that $\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$ is a (strong) hyper $M V$-algebra. Moreover, there exists an isomorphism $f:\left(X, \oplus_{X}, *_{X}, 0_{X}\right) \longrightarrow\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)$, such that $f\left(0_{X}\right)=0_{Y}$. Now, we define the map $\varphi:\left(\frac{\left(X, \oplus_{X}, *_{X}, 0_{X}\right)}{\beta^{*}}, \bar{\oplus}\right) \rightarrow$ $\left(\frac{\left(Y, \oplus_{Y},{ }_{Y}, 0_{Y}\right)}{\beta^{*}}, \bar{\oplus}\right)$ by $\varphi\left(\beta^{*}(x)\right)=\beta^{*}(f(x))$. First, we show that for any $x_{1}, x_{2} \in X, \varphi\left(\beta^{*}\left(x_{1}\right) \bar{\oplus} \beta^{*}\left(x_{2}\right)\right)=\varphi\left(\beta^{*}\left(x_{1}\right)\right) \bar{\oplus} \varphi\left(\beta^{*}\left(x_{2}\right)\right)$. By Lemma 5.2, for any $x \in X$,

$$
\begin{aligned}
\varphi\left(\beta^{*}\left(x_{1}\right) \bar{\oplus} \beta^{*}\left(x_{2}\right)\right) & =\varphi\left(\beta^{*}\left(x_{1} \oplus_{X} x_{2}\right)\right)=\beta^{*}\left(f\left(x_{1} \oplus_{X} x_{2}\right)\right) \\
& =\beta^{*}\left(f\left(x_{1}\right) \oplus_{Y} f\left(x_{2}\right)\right)=\beta^{*}\left(f\left(x_{1}\right)\right) \oplus \beta^{*}\left(f\left(x_{2}\right)\right) \\
& =\varphi\left(\beta^{*}\left(x_{1}\right)\right) \bar{\oplus} \varphi\left(\beta^{*}\left(x_{2}\right)\right)
\end{aligned}
$$

Since f is bijection, then φ is a bijection. Now, we show that φ is welldefined. Let $y_{1}, y_{2} \in Y$. Then there exist the unique elements $x_{1}, x_{2} \in X$
such that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Now, by Equation (3) and Lemma 5.6, $\varphi\left(\beta^{*}\left(x_{1}\right)\right)=\varphi\left(\beta^{*}\left(x_{2}\right)\right)$ if and only if $\beta^{*}\left(f\left(x_{1}\right)\right)=\beta^{*}\left(f\left(x_{2}\right)\right)$ if and only if $\beta^{*}\left(x_{1}\right)=\beta^{*}\left(x_{2}\right)$. Therefore, φ is well-defined and one to one and by Equation (3), is a homomorphism. Hence φ is an isomorphism. Therefore, $\left(\frac{\left(X, \oplus_{X}, *_{X}, 0_{X}\right)}{\beta^{*}}, \bar{\oplus}\right) \cong\left(\frac{\left(Y, \oplus_{Y}, *_{Y}, 0_{Y}\right)}{\beta^{*}}, \bar{\oplus}\right)$.

Definition 5.8. An $M V$-algebra $\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$, is called a fundamental MV-algebra, if there exists a nontrivial hyper MV-algebra $\left(N, \oplus_{N}, *_{N}, 0_{N}\right)$, such that $\left(\frac{\left(N, \oplus_{N}, *_{N}, 0_{N}\right)}{\beta^{*}}, \bar{\oplus}\right) \cong\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$.

Theorem 5.9. Every $M V$-algebra can be a fundamental $M V$-algebra.
Proof. Let $\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ be an $M V$-algebra. Then by Theorem 4.1, for any $M V$-algebra $\left(N, \oplus_{N}, *_{N}, 0_{N}\right),\left(M \times N, \oplus, *,\left(0_{M}, 0_{N}\right)\right)$ is a hyper $M V$-algebra. First, we show that for any $(a, b) \in M \times N$, $\beta^{*}(a, b)=\{(a, x) \mid x \in N\}$. For this let, $u=\bigoplus_{i=1}^{n}\left(m_{i}, n_{i}\right) \in \ell(M \times N)$, where $\left(m_{i}, n_{i}\right) \in M \times N$. We have

$$
u=\bigoplus_{i=1}^{n}\left(m_{i}, n_{i}\right)=\left\{\left(\bigoplus_{i=1}^{n} m_{i}, x\right) \mid m_{i} \in M, x \in N\right\}
$$

Now, if affect the unary operation $*$ on element u, then we obtain the type $u=\left\{\left(a, x_{i}\right) \mid a \in M\right.$ is fixed and $\left.x_{i} \in N\right\}$. Hence, for any $(a, b),(c, d) \in M \times N,(a, b) \beta^{*}(c, d)$ if and only if $a=c$. Now, we define the map $\varphi:\left(\frac{\left(M \times N, \oplus, *,\left(0_{M}, 0_{N}\right)\right)}{\beta^{*}}, \oplus\right) \longrightarrow\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ by $\varphi\left(\beta^{*}(m, n)\right)=m$. It is clear that $\beta^{*}(m, n)=\beta^{*}\left(m^{\prime}, n^{\prime}\right)$ if and only if $m=m^{\prime}$ if and only if $\varphi\left(\beta^{*}(m, n)\right)=\varphi\left(\beta^{*}\left(m^{\prime}, n^{\prime}\right)\right)$. Then, φ is well defined and one to one. In follow, we show that φ is a homomorphism. For this we have,

$$
\begin{aligned}
\varphi\left(\beta^{*}(m, n) \bar{\oplus} \beta^{*}\left(m^{\prime}, n^{\prime}\right)\right) & =\varphi\left(\beta^{*}\left(m \oplus_{M} m^{\prime}, n\right)\right)=m \oplus_{M} m^{\prime} \\
& =\varphi\left(\beta^{*}(m, n)\right) \oplus_{M} \varphi\left(\beta^{*}\left(m^{\prime}, n^{\prime}\right)\right)
\end{aligned}
$$

Moreover, by Lemma 5.2, for any $m \in M, \varphi\left(\left(\beta^{*}(m, n)\right)^{*}\right)=\varphi\left(\beta^{*}\left(m^{*}, n^{*}\right)\right)$ $=m^{*}=\left(\varphi\left(\beta^{*}(m, n)\right)^{*}\right.$ and $\varphi\left(\beta^{*}\left(0_{M}, 0_{N}\right)\right)=0_{M}$ Clearly, φ is onto. Therefore, φ is an isomorphism.

Corollary 5.10. From every infinite countable set we can construct a fundamental $M V$-algebra.

Proof. By Corollary 3.6, there exists a binary operation " \oplus ", a unary operation " *" and constant " 0 " such that $(M, \oplus, *, 0)$ is an $M V$-algebra. Now by Theorem $5.9,(M, \oplus, *, 0)$ is a fundamental $M V$-algebra.

Theorem 5.11. Let $(M, \oplus, *, 0)$ be any finite $M V$-algebra. Then for any binary hyperoperation " \oplus ", unary operation "*" and constant " 0 " on M, such that $(M, \oplus, *, 0)$ is a hyper $M V$-algebra, there is not any isomorphic between $(M, \oplus, *, 0)$ and $\left(\frac{(M, \oplus, *, 0)}{\beta^{*}}, \bar{\oplus}\right)$, that is $(M, \oplus, *, 0) \not \neq$ $\left(\frac{(M, \oplus, *, 0)}{\beta^{*}}, \bar{\oplus}\right)$.

Proof. Let $(M, \oplus, *, 0)$ be a finite $M V$-algebra, $|M|=n$ and $" \oplus$ " be a hyperoperation, " * " unary operation and "0" constant on M, such that $(M, \oplus, *, 0)$ be a hyper $M V$-algebra. Then there exist $x, y \in M$ such that $|x \oplus y| \geq 2$. Hence, there are $m, n \in x \oplus y$ such that $\beta^{*}(m)=$ $\beta^{*}(n)$. Since $\frac{M}{\beta^{*}}=\left\{\beta^{*}(x) \mid x \in M\right\}$, then, $\left|\frac{M}{\beta^{*}}\right|<n=|M|$. Therefore, $\left(\frac{(M, \oplus, *, 0)}{\beta^{*}}, \bar{\oplus}\right) \nsupseteq(M, \oplus, *, 0)$.

Now, in the follow we try to show that for any infinite countable set M, there exist an operation " \oplus ", an unary operation $*$ and constant 0 and a hyperoperation $" \oplus$ " on M, such that $(M, \oplus, *, 0)$ is an $M V$ algebra and $(M, \oplus, *, 0)$ is a hyper $M V$-algebra. Moreover, $\frac{(M, \oplus, *, 0)}{\beta^{*}} \cong$ $(M, \oplus, *, 0)$.

Theorem 5.12. Let M be an infinite countable set. Then there exist an operation " \oplus ", a unary operation " *" and constant "0" and a binary hyperoperation " \odot " on M such that $\left(\frac{(M, \odot, *, 0)}{\beta^{*}}, \bar{\oplus}\right) \cong(M, \oplus, *, 0)$. That is, M is a fundamental $M V$-algebra of itself.

Proof. Let M be an infinite countable set. Then by Corollary 5.10, there exist a binary operation " \oplus_{M} ", a unary operation " $*$ " and constant " 0_{M} " such that $\left(M, \oplus_{M}, *, 0_{M}\right)$ is an $M V$-algebra. Moreover, by Corollary 4.4, there exist a binary hyperoperation " \oplus ", a unary operation "*" and constant " $\left(0_{M}, a\right) "$ such that $\left(M \times\{a, b\}, \oplus, *,\left(0_{M}, a\right)\right)$ is a strong hyper $M V$-algebra and by Theorem 5.7 , there exist a binary hyperoperation $" \odot$ ", a unary operation " $*$ " and constant $" 0$ " such that $(M, \odot, *, 0)$ is a strong hyper $M V$-algebra and

$$
\begin{equation*}
\frac{\left(M \times\{a, b\}, \oplus, *,\left(0_{M}, a\right)\right)}{\beta^{*}} \cong \frac{(M, \odot, *, 0)}{\beta^{*}} \tag{4}
\end{equation*}
$$

First, we show that for any $(m, t) \in M \times\{a, b\}, \beta^{*}(m, t)=\{(m, a),(m, b)\}$.
For this let $u=\bigoplus_{i=1}^{n}\left(m_{i}, n_{i}\right) \in \ell(M \times\{a, b\})$, where $\left(m_{i}, n_{i}\right) \in M \times\{a, b\}$.
We have

$$
u=\bigoplus_{i=1}^{n}\left(m_{i}, n_{i}\right)=\left\{\left(\bigoplus_{i=1}^{n} m_{i}, a\right),\left(\bigoplus_{i=1}^{n} m_{i}, b\right)\right\}
$$

Now, if affect the unary operation $*$ on element u. Then we obtain the type $u=\{(m, a),(m, b) \mid m \in M$ is fixed $\}$ too. Hence, for any $(m, t),(n, s) \in M \times\{a, b\} .(m, t) \beta^{*}(n, s)$ if and only if $m=n$.
Now, we define the map $\varphi:\left(\frac{\left(M \times\{a, b\}, \oplus, *,\left(0_{M}, a\right)\right)}{\beta^{*}}, \bar{\oplus}\right) \longrightarrow\left(M, \oplus_{M}, *_{M}, 0_{M}\right)$ by $\varphi\left(\beta^{*}(m, t)\right)=m$. It is clear that $\beta^{*}(m, t)=\beta^{*}\left(m^{\prime}, s\right)$ if and only if $m=m^{\prime}$ if and only if $\varphi\left(\beta^{*}(m, t)\right)=\varphi\left(\beta^{*}\left(m^{\prime}, s\right)\right)$. Then, φ is well defined and one to one. Now, we show that φ is a homomorphism.
For this we have,

$$
\begin{aligned}
\varphi\left(\beta^{*}(m, t) \bar{\oplus} \beta^{*}\left(m^{\prime}, s\right)\right) & =\varphi\left(\beta^{*}\left(m \oplus_{M} m^{\prime}, t\right)\right)=m \oplus_{M} m^{\prime} \\
& =\varphi\left(\beta^{*}(m, t)\right) \oplus_{M} \varphi\left(\beta^{*}\left(m^{\prime}, s\right)\right) .
\end{aligned}
$$

Moreover, by Lemma 5.2, for any $m \in M, \varphi\left(\left(\beta^{*}(m, t)\right)^{*}\right)=\varphi\left(\beta^{*}\left(m^{*}, t^{*}\right)\right)$ $=m^{*}=\left(\varphi\left(\beta^{*}(m, t)\right)^{*}\right.$ and $\varphi\left(\beta^{*}\left(0_{M}, a\right)\right)=0_{M}$ Clearly, φ is onto. Hence, φ is an isomorphism and so

$$
\begin{equation*}
\left(\frac{\left(M \times\{a, b\}, \oplus, *,\left(0_{M}, a\right)\right)}{\beta^{*}}, \bar{\oplus}\right) \cong\left(M, \oplus_{M}, *_{M}, 0_{M}\right) \tag{5}
\end{equation*}
$$

Therefore, by (4) and (5), we have

$$
\left(M, \oplus_{M}, *_{M}, 0_{M}\right) \cong \frac{\left(M \times\{a, b\}, \oplus, *,\left(0_{M}, a\right)\right)}{\beta^{*}} \cong \frac{(M, \odot, *, 0)}{\beta^{*}}
$$

Open Problem 5.13. If $(M, \oplus, *, 0)$ is an infinite non-countable $M V$-algebra, then is it $(M, \oplus, *, 0)$ as a fundamental $M V$-algebra of itself?

Acknowledgements. Authors are thankful to learned referees for their valuable suggestions.

References

[1] R. A. Borzooei, R. Ameri and M. Hamidi, Fundamental Relation on Hyper BCKalgebras, An. Univ. Oradea fasc. Mat., Tom XXI, 1 (2014), 123-137.
[2] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958) 467-490.
[3] R. Cignoli, I. M. L. Dottaviano and D. Mundici, Algebraic Foundations of manyvalued Reasoning, Kluwer., 2000.
[4] P. Corsini, Prolegomena of Hypergroup theory, Second Edition, Aviani Editor., 1993.
[5] Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV-algebras, Set-Valued Math. and Apl., 1(2) (2008), 205-222.
[6] Sh. Ghorbani, E. Eslami, and A. Hasankhani, Quotient hyper MV-algebras, Sci. Math. Jpn., $\mathbf{6 6 (3)}(2007), 371-386$.
[7] Sh. Ghorbani, A. Hasankhani, and E. Eslami, Hyper MV-algebras, Set-Valued Math. Appl., 1 (2008), 205-222.
[8] P. R. Halmos, Naive Set Theory, Springer-Verlag, New York., 1974.
[9] Y. Imai and K. Iseki, On Axiom Systems of Propositional Calculi, XIV, Proc. Japan Acad., 42 (1966), 19-22.
[10] T. Jech, Set Theory, The 3rd Millennium Edition, Springer Monographs in Mathematics., 2002.
[11] Y. B. Jun, M. S. Kang, and H. S. Kim, Hyper MV-deductive systems of hyper MV- algebras, Commun. Korean Math. Soc., 25(4) (2010), 537-545.
[12] F. Marty, Sur une Generalization de la Notion de Groupe, 8th Congres Math. Scandinaves, Stockholm,. (1934), 45-49.
[13] S. Rasouli, D. Heidari and B. Davvaz, η-Relations and Transitivity Conditions of η on Hyper-MV Algebras, J. Mult.-Valued Logic Soft Comput., 15 (2009), 517-524.
[14] S. Rasouli, D. Heidari and B. Davvaz, Homomorphism, Ideals and Binary Relations on Hyper-MV Algebras, J. Mult.-Valued Logic Soft Comput., 17 (2011), 47-68.
[15] L. Torkzadeh and A. Ahadpanah, Hyper MV-ideals in hyper MV-algebras, MLQ Math. Log. Q., 56(1) (2010), 51-62.
[16] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., 1994.

Mohammad Hamidi

Department of Mathematics, Payame Noor University, Tehran, Iran E-mail: m.hamidi@pnu.ac.ir

Rajab Ali Borzooei
Department of Mathematics, Shahid Beheshti University, Tehran, Iran. E-mail: borzooei@sbu.ac.ir

[^0]: Received October 27, 2015. Accepted September 5, 2016.
 2010 Mathematics Subject Classification. 03G25, 06F35, 08B30.
 Key words and phrases. $M V$-algebra, fundamental $M V$-algebra, (strong) hyper $M V$-algebra.
 *Corresponding author

