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DERIVATIONS OF MV -ALGEBRAS FROM HYPER

MV -ALGEBRAS

M. Hamidi∗ and R. A. Borzooei

Abstract. In this paper, we investigate some new results in MV -
algebras and (strong) hyper MV -algebras. We show that for any
infinite countable set M , we can construct an MV -algebra and a
strong hyper MV -algebra on M . Specially, for any infinite totally
bounded set, we can construct a strong hyper MV -algebra on it.
Then by considering the concept of fundamental relation on hy-
per MV -algebras, we define the notion of fundamental MV -algebra
and prove that any MV -algebra is a fundamental MV -algebra. In
practical, we show that any infinite countable MV -algebra is a fun-
damental MV -algebra of itself, but it is not correct for finite MV -
algebras.

1. Introduction

MV -algebras introduced by C. C. Chang [2] in 1958 provide an al-
gebraic proof of completeness theorem of infinite valued Lukasewicz
propositional calculus. The hyper structure theory was introduced by
F. Marty [12] at the 8th congress of Scandinavian Mathematicians in
1934. Since then many researches have worked in this areas. Recently
in [5], Sh. Ghorbani, et al. applied the hyperstructure to MV -algebras
and introduced the concept of a hyper MV -algebra which is a general-
ization of an MV -algebra and investigated some related results. Based
on [6, 7], L. Torkzadeh , et al. [15], discussed hyper MV -ideals in hyper
MV -algebras. In [13, 14], Davvaz et al. are defined the concept of fun-
damental relation on hyper MV -algebras. Now, in this paper, we prove
that any MV -algebra is a fundamental MV -algebra. But, we show that
any finite MV -algebra is not a fundamental MV -algebra of itself.
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2. Preliminaries

Definition 2.1. [3, 13] Let M be a set with a binary operation ”⊕”,
a unary operation ”∗” and a constant ”0”. Then, (M,⊕, ∗, 0) is called an
MV -algebra if it satisfies the conditions (MV1): x⊕(y⊕z) = (x⊕y)⊕z,
(MV2): x ⊕ y = y ⊕ x, (MV3): x ⊕ 0 = x, (MV4): (x∗)∗ = x, (MV5):
x⊕ 0∗ = 0∗, (MV6): (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x. Let (M,⊕, ∗, 0) be
an MV -algebra. For any x, y ∈ M, a relation ” . ” which is defined
by x . y ⇐⇒ x∗ ⊕ y = 0∗ is a partial order and is called the natural
order (See [3]). We call (M,⊕, ∗, 0,.) is an MV -natural partial ordered
and an MV -natural total ordered is an MV -chain. Let (M,⊕, ∗, 0) and
(M ′,⊕′, ∗′, 0′) be two MV -algebras. A mapping f : M → M ′ is called
a homomorphism from M into M ′, if for any x, y ∈ X, f(x ⊕ y) =

f(x)⊕′ f(y), f(0) = 0′ and f(x∗) = (f(x))∗′. The homomorphism f , is
called an isomorphism, if it is onto and one to one.

Definition 2.2. [4] Let H be a nonempty set and P ∗(H) be the
family of all nonempty subsets of H. Functions ∗i

H
: H×H −→ P ∗(H),

where i ∈ {1, 2, . . . , n}, are called binary hyperoperations. For all x, y ∈
H, ∗i

H
(x, y) is called the hyperproduct of x and y and structure (H, ∗H )

is called a hypergroupoid. For any two nonempty subsets A and B

of hypergropoid H and x ∈ H, we define A ∗H B =
⋃

a∈A,b∈B
a ∗H b,

A ∗H x =
⋃

a∈A
a∗Hx and x ∗H B =

⋃

b∈B
x ∗H b.

Definition 2.3. [13, 14] Let M be a non-empty set, endowed with a
binary hyperoperation ”⊕”, a unary operation ”∗” and a constant ”0”.
Then, (M,⊕, ∗, 0) is called a hyper MV -algebra if satisfies the following
axioms, (HMV1): x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, (HMV2): x ⊕ y = y ⊕ x,
(HMV3): (x∗)∗ = x, (HMV4): (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, (HMV5):
0∗ ∈ x ⊕ 0∗, (HMV6): x ∈ x ⊕ 0, and we say that hyper MV -algebra
M , is a strong hyper MV -algebra, if it satisfies the axiom (HMV7): if
x ¿ y and y ¿ x, then x = y, for all x, y, z ∈ M , where x ¿ y is
defined by 0∗ ∈ x∗ ⊕ y. For every subsets A and B of M , we define
A ¿ B ⇐⇒ ∃a ∈ A and ∃b ∈ B such that a ¿ b and A∗ = {a∗ | a ∈ A}.
Let (M,⊕, ∗, 0) be a hyperMV -algebra and R be an equivalence relation
on M . If A and B are nonempty subsets of M , then ARB means that
for all a ∈ A, there exists b ∈ B such that aRb and for all b′ ∈ B,

there exists a′ ∈ A such that b′Ra′, ARB means that for all a ∈ A, and
b ∈ B, we have aRb, R is called regular on the right (on the left) if for
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all x ∈ M , from aRb, it follows that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b)), R
is called strongly regular on the right (on the left) if for all x ∈ M , from

aRb, it follows that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b)), R is called regular
(strongly regular) if it is regular (strongly regular) on the right and on
the left, R is called good if (a ◦ b)R0 and (b ◦ a)R0 imply aRb, for all
a, b ∈ M .

A totally ordered set (X, 0) is said to be well ordered (or have a
well-founded order) if every nonempty subset of X, has a least element.
Every finite totally ordered set is well ordered.

Theorem 2.4. [10] ( Zermelo’s Well-Ordering Theorem) Every set
can be well-ordered.

Lemma 2.5. [8] Let X be an infinite set. Then for any set {a, b}, we
have |X × {a, b}| = |X|.

Theorem 2.6. [1] Let X and Y be two sets such that |X| = |Y |. If
(Y,≤, 0) is a well-ordered set, then there exists a binary order relation
” ≤ ” on X and x0 ∈ X, such that (X,≤, x0) is a well-ordered set.

3. Constructing of Some MV -algebras

In this section, we get some results that we need in the next sections.
Specially, we construct an MV -algebra and a strong hyper MV -algebra
from a nonempty countable set and any totally ordered set with max-
imum element. We show that the MV -algebras and the hyper MV -
algebras with the same cardinal are isomorphism.

Lemma 3.1. Let X and Y be two sets such that |X| = |Y |. If
(X,⊕X , ∗X , 0X ) is an MV -algebra, then there exist a binary operation
” ⊕Y ”, a unary operation ” ∗Y ” and constant ”0Y ” on Y , such that
(Y,⊕Y , ∗Y , 0Y ) is anMV -algebra and (X,⊕X , ∗X , 0X )

∼= (Y,⊕Y , ∗Y , 0Y ).

Proof. Since |X| = |Y |, then there exists a bijection ϕ : X −→ Y .
For any y1 , y2 ∈ Y , we define the binary operation ” ⊕Y ” on Y by,
y1 ⊕Y y2 = ϕ(x1 ⊕X x2), where y1 = ϕ(x1), y2 = ϕ(x2) and x1 , x2 ∈ X.
It is easy to show that ⊕Y is well-defined. Moreover, for any y ∈ Y we
define the unary operation ”∗” as y∗ = ϕ(x∗), where x ∈ X, y = ϕ(x) and
0Y = ϕ(0X ). Since ϕ is a bijection, then the unary operation ∗ is well-
defined. Now, by some modification we can show that (Y,⊕Y , ∗Y , 0Y ) is
anMV -algebra. In the follow, we define the map θ : (X,⊕X , ∗X , 0X ) −→
(Y,⊕Y , ∗Y , ϕ(0

∗
X
)) by θ(x) = ϕ(x). Since ϕ is a bijection then θ is a
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bijection. Now, it is easy to see that θ is a homomorphism and so it is
an isomorphism.

Lemma 3.2. For any k ∈ N, we can construct an MV -algebra on
Wk = {0, 1, 2, 3, . . . , k − 1}, which is a chain.

Proof. Let k ∈ N. We define the binary operation ”¯” and the unary
operation ” ∗ ”, on Wk as follows:

x¯ y =

{
k − 1 , if x+ y ≥ k − 1

x+ y , otherwise
and x∗ = k − (x+ 1)

Clearly, 0 is the smallest element in Wk, k − 1 = max(Wk) and for any
x ∈ Wk, (x

∗)∗ = x. First, we show that ” ¯ ” is well-defined on Wk.
Let x = x′ and y = y′. If x + y ≥ k − 1 then x′ + y′ ≥ k − 1 and so
x¯ y = k − 1 = x′ ¯ y′. Moreover, if x+ y < k − 1 then x′ + y′ < k − 1
and so x¯y = x+y = x′+y′ = x′¯y′. Now, we show that (Wk,¯, ∗, 0)
is an MV -algebra. Let x, y, z ∈Wk. Then,

(MV1): Case 1: x+y ≥ k−1. Then x+(y+z) = (x+y)+z ≥ k−1.

Case 2: x+y < k−1. If (x+y)+z < k−1, then x+(y+z) = (x+y)+z <
k− 1 and if (x+ y) + z ≥ k− 1, then x+ (y + z) = (x+ y) + z ≥ k− 1.
Since in any cases, (x+y)+z = x+(y+z), then (x¯y)¯z = x¯(y¯z).

(MV2): Since x+ y = y + x, then x¯ y = y ¯ x.

(MV3): By hypothesis, x¯ 0 = x.

(MV4): By hypothesis, 0∗ = k − 1, (k − 1)∗ = 0 and (x∗)∗ = x.

(MV5): By hypothesis, x¯ 0∗ = x¯ (k − 1) = k − 1 = 0∗ .

(MV6): Case 1: y < x. Then, clearly k − (x+ 1) + y < k − 1 and

(x∗¯y)∗¯y = ((k−(x+1))¯y)∗¯y = (k−(x+1)+y)∗¯y = (x−y)¯y = x

Moreover, in this case we have k − (1 + y) + x ≥ (k − 1) and so

(y∗ ¯ x)∗ ¯ x = ((k − (1 + y))¯ x)∗ ¯ x = (k − 1)∗ ¯ x = 0¯ x = x

Case 2: y > x. Then, clearly k − (x+ 1) + y ≥ k − 1 and

(x∗ ¯ y)∗ ¯ y = ((k − (x+ 1))¯ y)∗ ¯ y = (k − 1)∗ ¯ y = 0¯ y = y

Moreover, in this case we have k − (y + 1) + x < k − 1 and so

(y∗¯x)∗¯x = ((k−(y+1))¯x)∗¯x = (k−(y+1)+x)∗¯x = (y−x)¯x = y

Case 3: y = x. Then, clearly (x∗ ¯ y)∗ ¯ y = (y∗ ¯ x)∗ ¯ x. Therefore,
(Wk,¯, ∗, 0) is an MV -algebra.
Now, for any x, y ∈Wk, x . y if and only if x∗¯ y = k− 1 if and only if
(k − (x+ 1))¯ y = k − 1 if and only if (k − (x+ 1)) + y ≥ k − 1 if and
only if x ≤ y. Therefore, (Wk,¯, ∗, 0,≤) is an MV -chain.
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Theorem 3.3. Let X be a finite set. Then there exist a binary
operation ”⊕X ” and unary operation ” ∗X ” and constant ”0X” on X,
such that (X,⊕X , ∗X , 0X ), is an MV -algebra.

Proof. Let X be a finite set. Then, there exists k ∈ W such that
|X| = |Wk|. Now, since by Lemma 3.2, (Wk,¯, ∗, 0) is an MV -algebra,
then by Lemma 3.1, there exist a binary operation ” ⊕X ”, a unary
operation ” ∗X ” and constant ”0X” on X , such that (X,⊕X , ∗X , 0X ),
is an MV -algebra.

Lemma 3.4. Let 1 < n ∈ Q. Then there exist a binary operation
”¯” and a unary operation ”∗” on E = Q∩ [1 n], such that (E,¯, ∗, 1)
is an MV -algebra.

Proof. For any 1 < n ∈ E, we define the binary operation ”¯ ” and
the unary operation ”∗” on E as follows:

x¯ y =

{
n , if xy ≥ n

xy , otherwise
and x∗ =

n

x

Then 1 is the smallest element in E, n = max(E) and for any x ∈ E,
(x∗)∗ = x. First, we show that ”¯” is well-defined on E. Let x = x1 and
y = y1. If xy ≥ n then x1y1 ≥ n and so x¯ y = n = x1 ¯ y1. Moreover,
if xy < n then x1y1 < n and so x ¯ y = xy = x1y1 = x1 ¯ y1. Clearly
”∗” is well-defined. Now, we show that (E,¯, ∗, 1) is an MV -algebra.
Let x, y, z ∈ E. Then,
(MV1): If xy ≥ n, since z ≥ 1, then x(yz) = (xy)z ≥ n. Now, let

xy < n. If (xy)z < n, then x(yz) = (xy)z < n and if (xy)z ≥ n,
then x(yz) = (xy)z ≥ n. Since in any cases, (xy)z = x(yz), then
(x¯ y)¯ z = x¯ (y ¯ z).
(MV2): Since xy = yx, then x¯ y = y ¯ x.

(MV3): By hypothesis, x¯ 1 = x.

(MV4): By hypothesis, 1∗ = n
1 = n, n∗ = n

n = 1 and (x∗)∗ = x.

(MV5): By hypothesis, x¯ 1∗ = x¯ n = n = 1∗.
(MV6): If y < x, then ny

x < n and (x∗ ¯ y)∗ ¯ y = (nx ¯ y)∗ ¯ y =

(nyx )∗ ¯ y = n
ny
x
¯ y = x

y ¯ y = x. Moreover, in this case we have nx
y > n

and so (y∗ ¯ x)∗ ¯ x = (ny ¯ x)∗ ¯ x = n∗ ¯ x = 1 ¯ x = x. If y > x

then, ny
x > n and (x∗ ¯ y)∗ ¯ y = (nx ¯ y)∗ ¯ y = n∗ ¯ y = 1 ¯ y = y.
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Moreover, in this case we have nx
y < n and so

(y∗ ¯ x)∗ ¯ x = (
n

y
¯ x)∗ ¯ x = (

nx

y
)∗ ¯ x = (

n
nx
y

)∗ ¯ x =
y

x
¯ x = y

If y = x, then clearly (x∗¯y)∗¯y = (y∗¯x)∗¯x. Therefore, (E,¯, ∗, 1)
is an MV -algebra.

Theorem 3.5. Let X be an infinite countable set. Then there exists
a binary operation ” ⊕ ”, a unary operation ” ∗ ” and constant ”0” on
X, such that (X,⊕, ∗, 0) is an MV -algebra.

Proof. Let X be an infinite countable set. Since E = Q ∩ [1 n] in
Lemma 3.4, is an infinite countable MV -algebra, so |X| = |E|. Now,
by Theorem 2.6, there exist a bijection ψ : E −→ X, a binary relation
” ≤ ” and the smallest element 0 = ψ(1) on X such that (X,≤, 0) is a
totally ordered set and for any t, s ∈ E we have

(1) ψ(t) ≤ ψ(s) if and only if t ≤ s.

Hence, for the largest element n ∈ E and for any x ∈ X, we have,
0 = ψ(1) ≤ x ≤ ψ(n). For any x, y ∈ X, since ψ is onto, there exist
i, j ∈ E such that x = ψ(i) and y = ψ(j). Now, we define a binary
operation ”⊕ ” and a unary operation ” ∗ ” on X as follows:

x⊕ y =

{
ψ(n) , if n ≤ i¯ j

ψ(i¯ j) , otherwise
and x∗ = ψ(i

∗
) = ψ(

n

i
)

that the operation ”¯” is defined in Lemma 3.4. First, we show that ”⊕”
is well-defined. Let x = x1 and y = y1. Then there exist i, i1, j, j1 ∈ E
such that x = ψ(i), x1 = ψ(i1), y = ψ(j), y1 = ψ(j1). Since, ψ is a
bijection, then i = i1 and j = j1. Now, if i ¯ j ≥ n then i1 ¯ j1 ≥ n
and so x ⊕ y = ψ(n) = ψ(i1 ¯ j1) = x1 ⊕ y1. Moreover, if i ¯ j < n
then i1 ¯ j1 < n and so x⊕ y = ψ(i¯ j) = ψ(i1 ¯ j1) = x1 ⊕ y1. Since,
ψ is a bijection, then clearly the operation ” ∗ ” is well-defined. Now,
since (E,¯,∗ , 1) is an MV -algebra, then we show that (X,⊕, ∗, 0) is an
MV -algebra. For this, let x = ψ(i), y = ψ(j), z = ψ(k) ∈ X where
i, j, k ∈ E.
(MV1): If i ¯ j ≥ n, then by Lemma 3.4, for any k ∈ E we have,

i¯ (j ¯ k) = (i¯ j)¯ k ≥ n.
Now, let i¯ j < n. If (i¯ j)¯ k < n, then i¯ (j ¯ k) = (i¯ j)¯ k < n
and if (i¯ j)¯ k = n, then i¯ (j ¯ k) = (i¯ j)¯ k = n. Since in any
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cases, (i¯ j)¯k = i¯ (j¯k), and ψ is a bijection, then ψ((i¯ j)¯k) =
ψ(i¯ (j ¯ k)) and so

(x⊕ y)⊕ z = ψ(i¯ j)⊕ z = ψ((i¯ j)¯ k) = ψ(i¯ (j ¯ k))

= x⊕ ψ(j ¯ k) = x⊕ (y ⊕ z).

(MV2): Since i¯ j = j ¯ i, then x⊕ y = ψ(i¯ j) = ψ(j ¯ i) = y⊕ x.

(MV3): Since i¯ 1 ≤ n then, by hypothesis, x⊕ ψ(1) = ψ(i)⊕ ψ(1) =

ψ(i¯ 1) = ψ(i) = x.
(MV4): By hypothesis, (x∗)∗ = (ψ(i∗))∗ = (ψ(ni ))

∗ = ψ( n
n
i
) = ψ(i) = x.

(MV5): Since i¯n ≥ n then, by hypothesis x⊕ψ(n) = ψ(i¯n) = ψ(n).

(MV6): Since (i∗ ¯ j)∗ ¯ j = (j∗ ¯ i)∗ ¯ i. We consider the following
cases:
Case 1: y = ψ(j) < ψ(i) = x. Then by (1), j < i and so n¯j

i < n. In
this case

(x∗ ⊕ y)∗ ⊕ y = (ψ(i∗ ¯ j))∗ ⊕ y = ψ((i∗ ¯ j)∗ ¯ j) = ψ((
n

i
¯ j)∗ ¯ j)

= ψ(
i

j
¯ j) = ψ(i).

Moreover, in this case we have n¯i
j > n and so

(y∗ ⊕ x)∗ ⊕ x = ψ((j∗ ¯ i)∗)⊕ x = ψ((j∗ ¯ i)∗ ¯ i)

= ψ((
n

j
¯ i)∗ ¯ i) = ψ((

n¯ j

i
)∗ ¯ i) = ψ((n))∗ ¯ i)

= ψ(1¯ i) = ψ(i).

Case 2: y = ψ(j) > ψ(i) = x. Then by (1), j > i and so, clearly
n¯j
i > n and

(x∗ ⊕ y)∗ ⊕ y = (ψ(i∗ ¯ j)∗)⊕ y = ψ((i∗ ¯ j)∗ ¯ j) = ψ((
n

i
¯ j)∗ ¯ j)

= ψ((
n¯ j

i
)∗ ¯ j) = ψ((n∗)¯ j) = ψ(1¯ j) = ψ(j).

Moreover, in this case we have ni
j < n and so

ψ((j∗ ¯ i)∗ ¯ i) = ψ((
n

j
¯ i)∗ ¯ i) = ψ((

n¯ i

j
)∗ ¯ i) = ψ((

n
n¯i
j

) ∗ ¯i

= ψ(
j

i
¯ i) = ψ(j).

Therefore, (X,⊕, ∗, 0) is an MV -algebra.
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Corollary 3.6. For any nonempty countable setX, we can construct
an MV -algebra on X.

Proof. Let X be a nonempty countable set. Then, |X| = |E|, where
E = Q ∩ [1 n] is infinite countable set in Lemma 3.4, or there exists
k ∈ N such that |X| = |Wk|. Now, by the Theorems 3.3 and 3.5, the
proof is straightforward.

Theorem 3.7. LetX be an infinite set. If (X,⊕X , 0X , ∗X ) is anMV -
algebra, then for any set {a, b}, there exist a binary operation ” ⊕ ”, a
unary operation ”∗” and constant ”0” onX such that (X×{a, b},⊕, ∗, 0)
is an MV -algebra and (X,⊕X , ∗X , 0X )

∼= (X × {a, b},⊕, ∗, 0)
Proof. Since X is an infinite set, then by Lemma 2.5, |X × {a, b}| =

|X|. Now, by Lemma 3.1, the proof is straightforward.

4. Constructing of Some (Strong) Hyper MV -algebras

Theorem 4.1. Let (M,⊕M , ∗M , 0M ) and (N,⊕N , ∗N , 0N ) be two
MV -algebras. Then there exist a binary hyperoperation ”⊕ ”, a unary
operation ” ∗ ” and constant ”0” on M ×N , such that (M ×N,⊕, ∗, 0)
is a hyper MV -algebra.

Proof. Let (M,⊕M , ∗M , 0M ) and (N,⊕N , ∗N , 0N ) be twoMV -algebras.
For any (m1, n1), (m2, n2) ∈ M × N , we define the binary hyperopera-
tion ”⊕” on M ×N by, (m1, n1)⊕ (m2, n2) = {(m1⊕M m2, n1), (m1⊕M

m2, n2)} and for any (m,n) ∈ M × N , the unary operation ” ∗ ” by,
(m,n)∗ = ∗(m,n) = (∗M (m), ∗N (n)) = (m∗

M , n∗
N ) and constant 0 =

(0M , 0N ). First, we show that the hyperoperation ”⊕ ” is well defined.
Let (m1, n1) = (m′

1, n
′
1) and (m2, n2) = (m′

2, n
′
2). Then,

(m1, n1)⊕ (m2, n2) = {(m1 ⊕M m2, n1), (m1 ⊕M m2, n2)}(2)

= {(m′
1 ⊕M m′

2, n
′
1), (m

′
1 ⊕M m′

2, n
′
2)}

= (m′
1, n

′
1)⊕ (m′

2, n
′
2)

Moreover, since (m,n) = (m′, n′) implies that ∗(m,n) = ∗(m′, n′) then
” ∗ ” is well-defined. Now, by some modifications we can show that
(M ×N,⊕, ∗, 0) is a hyper MV -algebra.

Theorem 4.2. Let (M,⊕M , ∗M , 0M ,.) and (N,⊕N , ∗N , 0N ,.) be
two MV -chains. Then there exist a binary hyperoperation ”⊕”, a unary
operation ” ∗ ” and constant ”0” on M ×N , such that (M ×N,⊕, ∗, 0)
is a strong hyper MV -algebra.
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Proof. Let (M,⊕M , ∗M , 0M ) be an MV -algebra and (N,⊕N , ∗N , 0N )
be an MV -chain. Now, for any (m1, n1), (m2, n2) ∈ M × N , we define
the binary hyperoperation ” ⊕ ” on M × N by, (m1, n1) ⊕ (m2, n2) =
{(m1⊕Mm2, n1), (m1⊕Mm2, n2)} and for any (m,n) ∈ M×N , the unary
operation ” ∗ ” by, (m,n)∗ = ∗(m,n) = (∗M (m), ∗N (n)) = (m∗

M , n∗
N )

and we let constant 0 = (0M , 0N ). By Theorem 4.1, (M ×N,⊕, ∗, 0) is a
hyper MV -algebra. Now, we define a binary relation ” ¿ ” on M ×N
by, (x, y) ¿ (z, w) if and only if (0M , 0N )

∗ ∈ (x, y)∗ ⊕ (z, w). We show
that for any (x, y), (z, w) ∈ M × N , if (x, y) ¿ (z, w) then x . z and
y . w. For this, let (x, y) ¿ (z, w). Then by the hypothesis,

(0M , 0N )
∗ = (0∗

M
, 0∗

N
) ∈ (x, y)∗ ⊕ (z, w) = (x∗M , y∗N )⊕ (z, w)

= {(x∗M ⊕M z, y∗N ), (x∗M ⊕M z, w)}
and so (0∗

M
, 0∗

N
) = (x∗M ⊕M z, y∗N ) or (0∗

M
, 0∗

N
) = (x∗M ⊕M z, w).

If (0∗
M
, 0∗

N
) = (x∗M ⊕M z, y∗N ), then y = 0N , x

∗
M ⊕M z = 0∗

M
. Now

since (M,⊕M , ∗M , 0M ) is an MV -chain, then x . z and y = 0N . w. If
(0∗

M
, 0∗

N
) = (x∗M ⊕M z, w), then w = 0∗

N
, x∗M ⊕M z = 0∗

M
. Now, since

(N,⊕N , ∗N , 0N ) is an MV -chain, x . z and y . 0∗
N
= w. Hence, in any

cases, we have, x . z and y . w. Therefore, (M ×N,⊕, ∗, 0) is a strong
hyper MV -algebra.

Lemma 4.3. Let X and Y be two sets such that |X| = |Y |. If
(X,⊕X , ∗X , 0X ) is a (strong) hyper MV -algebra, then there exist a bi-
nary hyperoperation ” ⊕Y ”, a unary operation ” ∗Y ” and constant
”0Y ” on Y , such that (Y,⊕Y , ∗Y , 0Y ) is a strong hyper MV -algebra and
(X,⊕X , ∗X , 0X ) ' (Y,⊕Y , ∗Y , 0Y ).

Proof. The proof is similar to the proof of Lemma 3.1, by some mod-
ifications.

Corollary 4.4. Let (M,⊕M , ∗M , 0M ,.) be an MV -chain. Then for
any set {a, b}:
(i) there exist a binary hyperoperation ”⊕”, a unary operation ”∗” and
constant ”0” on M × {a, b}, such that (M × {a, b},⊕, ∗, 0) is a strong
hyper MV -algebra.
(ii) If M is infinite, then there exist a binary hyperoperation ” ¯ ”, a
unary operation ” ∗ ” and constant ”0” on M , such that (M,¯, ∗, 0) is
a strong hyper MV -algebra. and (M × {a, b},⊕, ∗, 0) ∼= (M,¯, ∗, 0).

Proof. (i) First, we define the partial relation ” ≤ ” on set {a, b} by
≤:= {(a, a), (b, b), (a, b)}. Hence ({a, b},≤) is a totally ordered set. Now
we consider the following binary and unary operations :
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⊕ a b
a a b
b b b

and
* a b

b a

Then clearly ({a, b}, a,⊕, ∗) is a the smallest nontrivialMV -chain. Now,
we define the binary hyperoperation ”⊕ ” on M × {a, b} as follows:

(m1, t)⊕ (m2, s) = {(m1 ⊕M m2, t), (m1 ⊕M m2, s)}
Similar to proof of Theorem 4.2, (M × {a, b},⊕, ∗, 0) is a strong hyper
MV -algebra.
(ii) Since M is infinite set, then by Lemmas 2.5 and 4.3, there exist
a binary hyperoperation ” ¯ ”, a unary operation ” ∗ ” and constant
”0” on M , such that (M,¯, ∗, 0) is a strong hyper MV -algebra. and
(M × {a, b},⊕, ∗, 0) ∼= (M,¯, ∗, 0).

Theorem 4.5. Let (X,≤, x0 , y0) be a totally ordered set with small-
est element x0 and greatest element y0 . Then, there exist a binary hyper-
operation ”¯” and a unary operation ”∗” on X, such that (X,¯, ∗, x0)
is a (strong) hyper MV -algebra.

Proof. Firstly, if X = {x0 , y0}, then by the following tables:

¯ x0 y0

x0 {x0 , y0} {x0 , y0}
y0 {x0 , y0} {x0 , y0}

and
* x0 y0

y0 x0

(X,¯, ∗, x0) is a (strong) hyper MV -algebra. Now, let |X| ≥ 3. For any
x, y ∈ X, we define a binary hyperoperation ”¯ ” and unary operation
” ∗ ” as follows:

x¯ y =

{
{x0 , x, y} , if x 6= y

{x0 , y0 , x} , if x = y
and x∗ =





y0 , if x = x0

x0 , if x = y0

x , otherwise

First, we show ” ¯ ” is well-defined. Let x = x′ and y = y′. If x 6= y,
then, x ¯ y = {x0 , x, y} = {x0 , x

′, y′} = x′ ¯ y′. Now, let x = y. Then,
x¯ y = {x0 , x, y0} = {x0 , x

′, y0} = x′ ¯ y′. Hence ”¯ ” is well-defined.
Clearly the unary operation ”∗” is well-defined, too. Now we show that
(X,¯, ∗, x0) is a hyper MV -algebra. Let x, y, z ∈ X. Then,
(HMV1): Case 1: If x = y = z, then, (x¯ y)¯ z = x¯ (y ¯ z).

Case 2: If x = y 6= z, then, (x¯ y)¯ z = {x0 , x, z, y0} = x¯ (y ¯ z).
Case 3: If x 6= y = z, then, (x¯ y)¯ z = {x0 , x, y, y0} = x¯ (y ¯ z).
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Case 4: If x = z 6= y, then, (x¯ y)¯ z = {x0 , x, y, y0} = x¯ (y ¯ z).
Case 5: If x 6= z 6= y, then, (x¯ y)¯ z = {x0 , x, z, y} = x¯ (y ¯ z).
(HMV2): If x 6= y, then, (x ¯ y) = {x0 , x, y} = {x0 , y, x} = (y ¯ x).

Now let x = y. Then, (x¯ y) = {x0 , x, y0} = (y ¯ x).
(HMV3): By hypothesis (x∗)∗ = (x∗) = x.

(HMV4): Case 1: If x = x0 and y = y0 , then,

(x∗ ¯ y)∗ ¯ y = {y0 , x0} = (y ¯ x)¯ x = (y∗ ¯ x)∗ ¯ x

Case 2: If x = x0 and y 6= y0 , then, (x∗ ¯ y)∗ ¯ y = {y0 , x0 , y} =
(y ¯ x)¯ x = (y∗ ¯ x)∗ ¯ x.
Case 3: If x 6= x0 and y = y0 , then, (x∗ ¯ y)∗ ¯ y = {y0 , x0 , x} =
(y ¯ x)¯ x = (y∗ ¯ x)∗ ¯ x.
Case 4: If x 6= x0 , y 6= y0 and x 6= y, then, (x∗¯y)∗¯y = {y0 , x0 , x, y} =
(y ¯ x)¯ x = (y∗ ¯ x)∗ ¯ x.
(HMV5): By hypothesis x¯ x0 = {x, x0}, then x ∈ x¯ x0 .

(HMV6): By hypothesis x¯ x∗
0
= {x, x∗

0
, x0} then x∗

0
∈ x¯ x∗

0
.

Therefore, (X,¯, ∗, x0) is a hyper MV -algebra.
(HMV7): If x ¿ y and y ¿ x, then y0 ∈ x∗ ¯ y and y0 ∈ y∗ ¯ x.

Since {x, y} * {x0 , y0}, then x∗ = x and y∗ = y. This implies that
y0 ∈ x¯ y = y ¯ x and by hypothesis x = y.
Therefore, (X,¯, ∗, x0) is a strong hyper MV -algebra.

Open Problem 4.6. We proved that any bonded totally ordered set
can be a strong hyper MV -algebra. Let X be an infinite non bounded
totally ordered set. Is there a binary hyperoperation ” ⊕ ”, a unary
operation ” ∗ ” and constant ”0”, such that (X,⊕, ∗, 0) is a (strong)
hyper MV -algebra?

5. Fundamental MV -algebras

In this section, by using the notion of fundamental relation, we de-
fine the concept of fundamental MV -algebra and we prove that any
MV -algebra is a fundamental MV -algebra. Let (M,⊕, ∗, 0) be a hyper
MV -algebra and A be a subset of M . Then with Now, in the following,
the well-known idea of β∗ relation on hyperstructure [4, 16, 13] is trans-
ferred and applied to hyper MV -algebras.

Let (M,⊕, ∗, 0) be a hyper MV -algebra and L(A) denote the set
of all finite combinations of elements A with ⊕ and ∗. For example,
L({x1, x2}) = {x1 ⊕ x2, x

∗
1 ⊕ x2, (x1 ⊕ x2, )

∗, (x1 ⊕ x2, )
∗ ⊕ x1, . . .}. .
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Then we set β1 = {(x, x) | x ∈ M} and for every integer n ≥ 1, βn is
the relation defined as follows:

xβny ⇐⇒ ∃(a1, a2, . . . , an) ∈ Xn, ∃u ∈ L(a1, a2, . . . , an) s.t {x, y} ⊆ u

Obviously, for every n ≥ 1, the relations βn are symmetric, and the

relation β =
⋃

n≥1

βn is reflexive and symmetric. Now, let β∗ be the

transitive closure of β. Then β∗ is the smallest strongly regular equiv-
alence relation on M , such that M

β∗ is an MV -algebra. (See [13]).

Theorem 5.1. [14] Let (Mi ,⊕i, ∗i, 0i) be a hyper MV -algebra and
β∗
i be a fundamental relation on Mi, for any i = 1, 2, . . . , n. Then,

M1 ×M2 × . . .×Mn

β∗
M1×M2×...×Mn

∼= M1

β∗
1

× M2

β∗
2

× . . .× Mn

β∗
n

.

Lemma 5.2. Let (M,⊕, ∗, 0) be a hyper MV -algebra. Then for
the fundamental relation β∗ and for any m ∈ M , we have β∗(m∗) =
(β∗(m))∗ .

Proof. Letm ∈ M . For any t ∈ M , if t ∈ β∗(m∗), then there exist n ≥
1, (a1, a2, . . . , an) ∈ Mn and u ∈ L(a1, a2, . . . , an) such that {m∗, t} ⊆ u.
Now, since {m, t∗} = {(m∗)∗, t∗} = {m∗, t}∗ ⊆ u∗, then t∗ ∈ β∗(m) and
so β∗(m∗) ⊆ (β∗(m))∗. Let t ∈ (β∗(m))∗. Then t∗ ∈ β∗(m) and there ex-
ist n ≥ 1, (a1, a2, . . . , an) ∈ Mn and u ∈ L(a1, a2, . . . , an) that {m, t∗} ⊆
u. Now, since {m∗, t} = {m∗, (t∗)∗} = {m, t∗}∗ ⊆ u∗, then t ∈ β∗(m∗)
and so (β∗(m))∗ ⊆ β∗(m∗).

Lemma 5.3. Let (X,⊕X , ∗X , 0X) and (Y,⊕Y , ∗Y , 0Y ) be two hyper
MV -algebras and f : (X,⊕X , ∗X , 0X) → (Y,⊕Y , ∗Y , 0Y ) be a homomor-
phism. Then for any x, y ∈ X, xβ∗

X
y implies that f(x)β∗

Y
f(y).

Proof. Let (X,⊕X , ∗X , 0X) and (Y,⊕Y , ∗Y , 0Y ) be two hyper MV -
algebras and x, y ∈ X. Since xβ∗

X
y, then there exists u ∈ L(X), such

that {x, y} ⊆ u. Now, for homomorphism f : (X,⊕X , ∗X , 0X) →
(Y,⊕Y , ∗Y , 0Y ) we have {f(x), f(y)} = f{x, y} ⊆ f(u) ∈ L(Y ). There-
fore, f(x)β∗

Y
f(y).

Example 5.4. Let (M1,⊕1 , ∗1 , 0) and (M2,⊕2 , ∗2 , 0) be two hyper
MV -algebras by the following tables:

⊕1 0 1
0 {0, 1} {0, 1}
1 {0, 1} {0, 1}

,
∗1 0 1

1 0
,

⊕2 0 b 1
0 {0} {b} {b, 1}
b {b} {b, 1} {b, 1}
1 {b, 1} {b, 1} {b, 1}

and
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∗2 0 b 1
1 b 0

.

Now, we define the map f : (M2,⊕2 , ∗2 , 0) −→ (M1,⊕1 , ∗1 , 0) by f(0) =

0 and f(1) = f(b) = 1. Moreover,
(M1,⊕1 ,∗1 ,0)

β∗ = {β∗(0) = {0, 1}, β∗(0) =

{0, 1}} and
(M2,⊕2 ,∗2 ,0)

β∗ = {β∗(0) = {0}, β∗(b) = {b, 1}, β∗(b) = {b, 1}}.
Clearly f is a homomorphism which is not injective and f(b) ∈ β∗(f(1)),
but b 6∈ β∗(1).

Lemma 5.5. Let (X,⊕X , ∗X , 0X) and (Y,⊕Y , ∗Y , 0Y ) be hyperMV -
algebras and f : (X,⊕X , ∗X , 0X) → (Y,⊕Y , ∗Y , 0Y ) be a monomor-
phism. Then for any x, y ∈ X, f(x)β∗

Y
f(y) implies that xβ∗

X
y.

Proof. For any x, y ∈ X, since f(x)β∗
Y
f(y), there exists v ∈ L(Y ),

such that {f(x), f(y)} ⊆ v. Now, for a monomorphism f : X → Y we
have {x, y} = {f−1(f(x)), f−1(f(y))} = f−1{f(x), f(y)} ⊆ f−1(v) ∈ U .
Therefore, xv∗

X
y.

Lemma 5.6. Let (X,⊕X , ∗X , 0X) and (Y,⊕Y , ∗Y , 0Y ) be two hyper
MV -algebras and f : (X,⊕X , ∗X , 0X) → (Y,⊕Y , ∗Y , 0Y ) be an isomor-
phism. Then for any x, y ∈ X, xβ∗

X
y if and only if f(x)β∗

Y
f(y).

Proof. By Lemmas 5.3 and 5.5, the proof is straightforward.

Theorem 5.7. Let X and Y be two nonempty sets and |X| = |Y |.
If (X,⊕X , ∗X , 0X ) is a (strong) hyper MV -algebra, then there exist a
binary hyperoperation ” ⊕Y ”, a unary operation ” ∗Y ” and constant

”0Y ” on Y , such that (
(X,⊕

X
,∗

X
,0

X
)

β∗ , ◦) ∼= (
(Y,⊕

Y
,∗

Y
,0

Y
)

β∗ , ◦).
Proof. Since |X| = |Y |, then by Lemma 4.3, there exist a binary

hyperoperation ” ⊕Y ”, a unary operation ” ∗Y ” and constant 0Y on
Y such that (Y,⊕Y , ∗Y , 0Y ) is a (strong) hyper MV -algebra. Moreover,
there exists an isomorphism f : (X,⊕X , ∗X , 0X ) −→ (Y,⊕Y , ∗Y , 0Y ),

such that f(0X ) = 0Y . Now, we define the map ϕ : (
(X,⊕

X
,∗

X
,0

X
)

β∗ ,⊕) →
(
(Y,⊕

Y
,∗

Y
,0

Y
)

β∗ ,⊕) by ϕ(β∗(x)) = β∗(f(x)). First, we show that for any

x1 , x2 ∈ X, ϕ(β∗(x1)⊕β∗(x2)) = ϕ(β∗(x1))⊕ϕ(β∗(x2)). By Lemma 5.2,
for any x ∈ X,

ϕ(β∗(x1)⊕β∗(x2)) = ϕ(β∗(x1 ⊕X x2)) = β∗(f(x1 ⊕X x2))

= β∗(f(x1)⊕Y f(x2)) = β∗(f(x1))⊕β∗(f(x2))

= ϕ(β∗(x1))⊕ϕ(β∗(x2))(3)

Since f is bijection, then ϕ is a bijection. Now, we show that ϕ is well-
defined. Let y1 , y2 ∈ Y . Then there exist the unique elements x1 , x2 ∈ X
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such that y1 = f(x1) and y2 = f(x2). Now, by Equation (3) and Lemma
5.6, ϕ(β∗(x1)) = ϕ(β∗(x2)) if and only if β∗(f(x1)) = β∗(f(x2)) if and
only if β∗(x1) = β∗(x2). Therefore, ϕ is well-defined and one to one
and by Equation (3), is a homomorphism. Hence ϕ is an isomorphism.

Therefore, (
(X,⊕

X
,∗

X
,0

X
)

β∗ ,⊕) ∼= (
(Y,⊕

Y
,∗

Y
,0

Y
)

β∗ ,⊕).

Definition 5.8. An MV -algebra (M,⊕M , ∗M , 0M ), is called a fun-
damental MV -algebra, if there exists a nontrivial hyper MV -algebra

(N,⊕N , ∗N , 0N ), such that (
(N,⊕

N
,∗

N
,0

N
)

β∗ ,⊕) ∼= (M,⊕M , ∗M , 0M ).

Theorem 5.9. EveryMV -algebra can be a fundamentalMV -algebra.

Proof. Let (M,⊕M , ∗M , 0M ) be an MV -algebra. Then by Theorem
4.1, for any MV -algebra (N,⊕N , ∗N , 0N ), (M × N,⊕, ∗, (0M , 0N )) is
a hyper MV -algebra. First, we show that for any (a, b) ∈ M × N ,

β∗(a, b) = {(a, x) | x ∈ N}. For this let, u =
n⊕

i=1

(mi, ni) ∈ `(M × N),

where (mi, ni) ∈ M ×N . We have

u =

n⊕

i=1

(mi, ni) = {(
n⊕

i=1

mi, x) | mi ∈ M,x ∈ N}

Now, if affect the unary operation ∗ on element u, then we obtain
the type u = {(a, xi) | a ∈ M is fixed and xi ∈ N}. Hence, for
any (a, b), (c, d) ∈ M × N , (a, b)β∗(c, d) if and only if a = c. Now,

we define the map ϕ : (
(M×N,⊕,∗,(0

M
,0

N
))

β∗ ,⊕) −→ (M,⊕M , ∗M , 0M ) by

ϕ(β∗(m,n)) = m. It is clear that β∗(m,n) = β∗(m′, n′) if and only if
m = m′ if and only if ϕ(β∗(m,n)) = ϕ(β∗(m′, n′)). Then, ϕ is well
defined and one to one. In follow, we show that ϕ is a homomorphism.
For this we have,

ϕ(β∗(m,n)⊕β∗(m′, n′)) = ϕ(β∗(m⊕M m′, n)) = m⊕M m′

= ϕ(β∗(m,n))⊕M ϕ(β∗(m′, n′)).

Moreover, by Lemma 5.2, for anym ∈ M , ϕ((β∗(m,n))∗) = ϕ(β∗(m∗, n∗))
= m∗ = (ϕ(β∗(m,n))∗ and ϕ(β∗(0M , 0N )) = 0M Clearly, ϕ is onto.
Therefore, ϕ is an isomorphism.

Corollary 5.10. From every infinite countable set we can construct
a fundamental MV -algebra.

Proof. By Corollary 3.6, there exists a binary operation ”⊕”, a unary
operation ”∗” and constant ”0” such that (M,⊕, ∗, 0) is an MV -algebra.
Now by Theorem 5.9, (M,⊕, ∗, 0) is a fundamental MV -algebra.
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Theorem 5.11. Let (M,⊕, ∗, 0) be any finite MV -algebra. Then for
any binary hyperoperation ”⊕”, unary operation ”∗” and constant ”0”
on M , such that (M,⊕, ∗, 0) is a hyper MV -algebra, there is not any

isomorphic between (M,⊕, ∗, 0) and ( (M,⊕,∗,0)
β∗ ,⊕), that is (M,⊕, ∗, 0) �

( (M,⊕,∗,0)
β∗ ,⊕).

Proof. Let (M,⊕, ∗, 0) be a finite MV -algebra, |M | = n and ”⊕ ” be
a hyperoperation, ” ∗ ” unary operation and ”0” constant on M , such
that (M,⊕, ∗, 0) be a hyper MV -algebra. Then there exist x, y ∈ M
such that |x⊕ y| ≥ 2. Hence, there are m,n ∈ x⊕ y such that β∗(m) =
β∗(n). Since M

β∗ = {β∗(x) | x ∈ M}, then, |Mβ∗ | < n = |M |. Therefore,

( (M,⊕,∗,0)
β∗ ,⊕) � (M,⊕, ∗, 0).
Now, in the follow we try to show that for any infinite countable set

M , there exist an operation ” ⊕ ”, an unary operation ∗ and constant
0 and a hyperoperation ” ⊕ ” on M , such that (M,⊕, ∗, 0) is an MV -

algebra and (M,⊕, ∗, 0) is a hyper MV -algebra. Moreover, (M,⊕,∗,0)
β∗ ∼=

(M,⊕, ∗, 0).
Theorem 5.12. Let M be an infinite countable set. Then there exist

an operation ”⊕”, a unary operation ”∗” and constant ”0” and a binary

hyperoperation ”¯ ” on M such that ( (M,¯,∗,0)
β∗ ,⊕) ∼= (M,⊕, ∗, 0). That

is, M is a fundamental MV -algebra of itself.

Proof. Let M be an infinite countable set. Then by Corollary 5.10,
there exist a binary operation ” ⊕M ”, a unary operation ” ∗ ” and
constant ”0M” such that (M,⊕M , ∗, 0M ) is an MV -algebra. Moreover,
by Corollary 4.4, there exist a binary hyperoperation ” ⊕ ”, a unary
operation ”∗” and constant ”(0M , a)” such that (M×{a, b},⊕, ∗, (0M , a))
is a strong hyper MV -algebra and by Theorem 5.7, there exist a binary
hyperoperation ”¯”, a unary operation ”∗” and constant ”0” such that
(M,¯, ∗, 0) is a strong hyper MV -algebra and

(4)
(M × {a, b},⊕, ∗, (0M , a))

β∗
∼= (M,¯, ∗, 0)

β∗

First, we show that for any (m, t) ∈ M×{a, b}, β∗(m, t) = {(m, a), (m, b)}.
For this let u =

n⊕

i=1

(mi, ni) ∈ `(M×{a, b}), where (mi, ni) ∈ M×{a, b}.
We have

u =

n⊕

i=1

(mi, ni) = {(
n⊕

i=1

mi, a), (

n⊕

i=1

mi, b)}
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Now, if affect the unary operation ∗ on element u. Then we obtain
the type u = {(m, a), (m, b) | m ∈ M is fixed} too. Hence, for any
(m, t), (n, s) ∈ M × {a, b}. (m, t)β∗(n, s) if and only if m = n.

Now, we define the map ϕ : (
(M×{a,b},⊕,∗,(0

M
,a))

β∗ ,⊕) −→ (M,⊕M , ∗M , 0M )

by ϕ(β∗(m, t)) = m. It is clear that β∗(m, t) = β∗(m′, s) if and only if
m = m′ if and only if ϕ(β∗(m, t)) = ϕ(β∗(m′, s)). Then, ϕ is well de-
fined and one to one. Now, we show that ϕ is a homomorphism.
For this we have,

ϕ(β∗(m, t)⊕β∗(m′, s)) = ϕ(β∗(m⊕M m′, t)) = m⊕M m′

= ϕ(β∗(m, t))⊕M ϕ(β∗(m′, s)).

Moreover, by Lemma 5.2, for anym ∈ M , ϕ((β∗(m, t))∗) = ϕ(β∗(m∗, t∗))
= m∗ = (ϕ(β∗(m, t))∗ and ϕ(β∗(0M , a)) = 0M Clearly, ϕ is onto. Hence,
ϕ is an isomorphism and so

(5) (
(M × {a, b},⊕, ∗, (0M , a))

β∗ ,⊕) ∼= (M,⊕M , ∗M , 0M )

Therefore, by (4) and (5), we have

(M,⊕M , ∗M , 0M ) ∼= (M × {a, b},⊕, ∗, (0M , a))

β∗
∼= (M,¯, ∗, 0)

β∗

Open Problem 5.13. If (M,⊕, ∗, 0) is an infinite non-countable
MV -algebra, then is it (M,⊕, ∗, 0) as a fundamental MV -algebra of
itself?
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