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DERIVATIONS OF MV-ALGEBRAS FROM HYPER
MV-ALGEBRAS

M. HaMIDI* AND R. A. BORZOOEI

Abstract. In this paper, we investigate some new results in MV -
algebras and (strong) hyper MV -algebras. We show that for any
infinite countable set M, we can construct an M V-algebra and a
strong hyper MV -algebra on M. Specially, for any infinite totally
bounded set, we can construct a strong hyper MV-algebra on it.
Then by considering the concept of fundamental relation on hy-
per MV -algebras, we define the notion of fundamental MV -algebra
and prove that any MV-algebra is a fundamental MV -algebra. In
practical, we show that any infinite countable M V-algebra is a fun-
damental M V-algebra of itself, but it is not correct for finite MV -
algebras.

1. Introduction

MYV -algebras introduced by C. C. Chang [2] in 1958 provide an al-
gebraic proof of completeness theorem of infinite valued Lukasewicz
propositional calculus. The hyper structure theory was introduced by
F. Marty [12] at the 8th congress of Scandinavian Mathematicians in
1934. Since then many researches have worked in this areas. Recently
in [5], Sh. Ghorbani, et al. applied the hyperstructure to MV -algebras
and introduced the concept of a hyper MV -algebra which is a general-
ization of an MV -algebra and investigated some related results. Based
on [6, 7], L. Torkzadeh , et al. [15], discussed hyper M V-ideals in hyper
MYV -algebras. In [13, 14], Davvaz et al. are defined the concept of fun-
damental relation on hyper MV -algebras. Now, in this paper, we prove
that any MV -algebra is a fundamental MV -algebra. But, we show that
any finite MV -algebra is not a fundamental MV -algebra of itself.
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2. Preliminaries

Definition 2.1. [3, 13] Let M be a set with a binary operation” &7,
a unary operation” *” and a constant ”0”. Then, (M, ®, *,0) is called an
MYV -algebra if it satisfies the conditions (MV1): z®(y$z) = (zhy) Bz,
(MV2): z@y=ydz, (MV3): 0=z, (MV4): (%) ==z, (MV5):
x®0*=0% (MV6): (z*dy)* ®dy= Wy @x)" ®x. Let (M,P,*,0) be
an MV -algebra. For any x,y € M, a relation ” < ” which is defined
by v Sy < z* @&y = 0* is a partial order and is called the natural
order (See [3]). We call (M, ®,*,0,<) is an MV -natural partial ordered
and an MV -natural total ordered is an MV -chain. Let (M, ®,*,0) and
(M' &', %,0") be two MV -algebras. A mapping f : M — M’ is called
a homomorphism from M into M’, if for any z,y € X, f(z ®y) =
f(x) & f(y), f(0) =0 and f(z*) = (f(x))*. The homomorphism f, is
called an isomorphism, if it is onto and one to one.

Definition 2.2. [4] Let H be a nonempty set and P*(H) be the
family of all nonempty subsets of H. Functions *;, : Hx H — P*(H),
where i € {1,2,...,n}, are called binary hyperoperations. For all x,y €
H, 5 (x,y) is called the hyperproduct of z and y and structure (H,*,,)
is called a hypergroupoid. For any two nonempty subsets A and B
of hypergropoid H and x € H, we define A ¥, B = U ax*, b,

a€AbEB
Ax, oz = U ax, v and x x, B = U x %, b.
acA beB

Definition 2.3. [13, 14| Let M be a non-empty set, endowed with a
binary hyperoperation” &”, a unary operation ” x” and a constant ”(0”.
Then, (M, ®,*,0) is called a hyper MV -algebra if satisfies the following
axioms, (HMV1): 2 @ (y@® z) = (zdy) ®z, (HMV2): 2Dy =y,
(HMV3): (z*)* =z, (HMV4): (z* @ y)* dy= (y" ®x)* ®z, (HMV5):
0" € x® 0%, (HMV6): z € x & 0, and we say that hyper MV -algebra
M, is a strong hyper MV -algebra, if it satisfies the axiom (HMV7): if
r < yandy < z, then x = y, for all x,y,z € M, where x < y is
defined by 0* € z* @& y. For every subsets A and B of M, we define
A <« B <= 3Ja € A and 3b € B such that a < b and A* = {a* | a € A}.
Let (M, ®, *,0) be a hyper MV -algebra and R be an equivalence relation
on M. If A and B are nonempty subsets of M, then ARB means that
for all a € A, there exists b € B such that aRb and for all ¥ € B,
there exists a’ € A such that b’ Ra’, ARB means that for all a € A, and
b € B, we have aRb, R is called regular on the right (on the left) if for
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all x € M, from aRb, it follows that (aox)R(boxz) ((xoa)R(zob)), R
is called strongly regular on the right (on the left) if for all x € M, from

aRb, it follows that (a o x)R(boz) ((x oa)R(xob)), R is called regular
(strongly regular) if it is regular (strongly regular) on the right and on
the left, R is called good if (a o b)R0O and (b o a)R0 imply aRb, for all
a,be M.

A totally ordered set (X,0) is said to be well ordered (or have a
well-founded order) if every nonempty subset of X, has a least element.
Every finite totally ordered set is well ordered.

Theorem 2.4. [10] ( Zermelo’s Well-Ordering Theorem) Every set
can be well-ordered.

Lemma 2.5. [8] Let X be an infinite set. Then for any set {a, b}, we
have | X x {a,b}| = | X].

Theorem 2.6. [1] Let X and Y be two sets such that |X| = |Y|. If
(Y, <,0) is a well-ordered set, then there exists a binary order relation
7 <” on X and z, € X, such that (X, <,x,) is a well-ordered set.

3. Constructing of Some MYV -algebras

In this section, we get some results that we need in the next sections.
Specially, we construct an MV -algebra and a strong hyper MV -algebra
from a nonempty countable set and any totally ordered set with max-
imum element. We show that the MV -algebras and the hyper MV-
algebras with the same cardinal are isomorphism.

Lemma 3.1. Let X and Y be two sets such that |X| = |Y|. If
(X,®,,%,,0,) is an MV -algebra, then there exist a binary operation

7 @, 7, a unary operation ” x, 7 and constant "0,” on Y , such that
(Y, ®,,*,,0,) isan MV-algebra and (X,®,,*,,0,) = (Y,®,,*,,0,).

Proof. Since |X| = |Y|, then there exists a bijection ¢ : X — Y.
For any y,,y, € Y, we define the binary operation ” @, ” on Y by,
Y, By Y, = @(, By ,), where y, = p(2,), y, = ¢(z,) and z,,z, € X.
It is easy to show that @, is well-defined. Moreover, for any y € Y we
define the unary operation ”*” as y* = p(x*), where z € X,y = ¢(x) and
0, = ¢(0,). Since ¢ is a bijection, then the unary operation * is well-
defined. Now, by some modification we can show that (Y, ., ,*,,0, ) is
an MV -algebra. In the follow, we define the map 6 : (X, ®,,*,,0,) —

(Y, @y, %y, 9(0%)) by 0(x) = p(x). Since ¢ is a bijection then 0 is a
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bijection. Now, it is easy to see that 6 is a homomorphism and so it is
an isomorphism. ]

Lemma 3.2. For any k € N, we can construct an MV -algebra on
Wi =1{0,1,2,3,...,k — 1}, which is a chain.

Proof. Let k € N. We define the binary operation ” ®” and the unary

operation ” *”, on W; as follows:

x@yZ{k_l ,1fx+?/2k—1 and z¥=k—(x+1)
r+1y ,otherwise

Clearly, 0 is the smallest element in Wy, k — 1 = maz(Wy) and for any
x € Wy, (*)* = z. First, we show that 7 ©®” is well-defined on Wj.
Letz =2"andy =y fz+y>k—1then2'+1y >k —1 and so
rOy=k—1=2"®y. Moreover, if t +y < k—1then 2z’ +¢y <k —1
andsox@Qy=x+y =2"+y =2’ ©y'. Now, we show that (W, ®, *,0)
is an MV-algebra. Let x,y, z € W. Then,

(MV1): Case 1: x4y >k—1. Thenz+(y+2) = (x+y)+2z > k—1.
Case 2: z+y < k—1. If (x+y)+2z < k—1, then 2+ (y+2) = (z+y)+2 <
k—landif (x+y)+2z>k—1,thenx+(y+2)=(x+y)+2>k—1.
Since in any cases, (r+y)+2 = v+ (y+2), then (zOy) Oz =20 (yO 2).

(MV2): Sincex+y=y+z,thenz0y=y0oz.

MV3): By hypothesis, z ® 0 = z.

MV4): By hypothesis, 0* =k —1,(k — 1)* =0 and (z*)* = =.
MV5): By hypothesis, 20 0* =20 (k—1)=k—1=0".
MV6): Case 1: y < z. Then, clearly k — (z +1)+y < k— 1 and

(z"oy) oy = ((k—(z+1))0y) 0y = (k—(z+1)+y) Oy = (z—y)oOy ==
Moreover, in this case we have k — (1 4+y) +x > (k — 1) and so
yor)yor=(k-(1+y)ez)or=k-1)0z=00z=21
Case 2: y > x. Then, clearly k — (r+ 1) +y >k — 1 and
@oy) oy=(k-(@E+1)oy) oy=>Fk-1)0y=00y=y
Moreover, in this case we have k — (y+ 1) + z < k — 1 and so
(y'ox) or = ((k—(y+1))ox) 0z = (k—(y+1)+2)* 0z = (y—x)0r =y

Case 3: y = x. Then, clearly (z* © y)* ©y = (y* © x)* ® . Therefore,
(W, ®, %,0) is an MV-algebra.

Now, for any x,y € Wy, x < y if and only if * ©y = k — 1 if and only if
(k—(x+1)o0y=k—1ifand only if (k — (x 4+ 1)) +y >k —1if and
only if x < y. Therefore, (W, ®,*,0, <) is an MV-chain.

—

—

—

—
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O

Theorem 3.3. Let X be a finite set. Then there exist a binary
operation ” @, 7 and unary operation ” *, ” and constant ”0,” on X,
such that (X,®,,*,,0,), is an MV -algebra.

Proof. Let X be a finite set. Then, there exists k¥ € W such that
| X| = |Wg|. Now, since by Lemma 3.2, (W, ®, *,0) is an M V-algebra,
then by Lemma 3.1, there exist a binary operation ” @, 7, a unary

operation ” %, 7 and constant 70,” on X , such that (X,®,,*,,0,),
is an MV -algebra. O

Lemma 3.4. Let 1 < n € Q. Then there exist a binary operation
" ®” and a unary operation” *” on E = QN|[1 n|, such that (E,®,*,1)
is an MV -algebra.

Proof. For any 1 < n € E, we define the binary operation ” ®” and
the unary operation ”*” on E as follows:

n ifxy >n n
rOy= 1 5y - and 2" = —
xy ,otherwise T

Then 1 is the smallest element in E,n = maz(E) and for any = € E,
(z*)* = x. First, we show that ” ®” is well-defined on E. Let x = x; and
y=1vy1. If zy > n then x1y; > nandsoxz®y =n =1 ®y;. Moreover,
if zy < n then 191 <nandsozxz Oy =ay = z1y1 = 21 ® y;. Clearly
77 is well-defined. Now, we show that (E,®,*,1) is an MV-algebra.
Let z,y,2 € E. Then,

(MV1): If zy > n, since z > 1, then z(yz) = (zy)z > n. Now, let
zy < n. If (zy)z < n, then z(yz) = (zy)z < n and if (xy)z > n,
then z(yz) = (xy)z > n. Since in any cases, (zy)z = x(yz), then
(z0y)0z=20(YyO?2).

MV2): Since zy = yzx, then z Oy =y O .

MV3): By hypothesis, t ® 1 = z.

MV4): By hypothesis, 1* = ¢ =n,n* = =1 and (z*)* = .

n

—~
~—

—~
~—

—~
~—

(MV5): By hypothesis, z ® 1* =2 ©n =n = 1*.
(MV6): If y < 2, then 2 < nand (z* ©y)* Oy = (3 0y) 0Oy =
) oy=wm 0oy = % ®y = x. Moreover, in this case we have % >n

and so (y*@m)*@:pz(%@x)*@xzn*@le@x:m. Ify>ux
then, ” >nand (z*©0y) Oy =(20y) Oy=n"0y=10y=1y.
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Moreover, in this case we have % < n and so

n nx n

W oz) or=(-0r) 0= (?)*@x: (ag) @z ==0z=y
Y

If y = x, then clearly (z*©y)* Oy = (y*©z)*©x. Therefore, (E,®,*,1)

is an MV -algebra. O

Theorem 3.5. Let X be an infinite countable set. Then there exists
a binary operation ” @7, a unary operation ” x” and constant ”0” on
X, such that (X, ®,*,0) is an MV -algebra.

Proof. Let X be an infinite countable set. Since E = QN [1 n] in
Lemma 3.4, is an infinite countable MV-algebra, so |X| = |E|. Now,
by Theorem 2.6, there exist a bijection ¥ : E — X, a binary relation
” <7 and the smallest element 0 = ¢(1) on X such that (X, <,0) is a
totally ordered set and for any t,s € EF we have

(1) ¥(t) < (s) if and only if t < s.

Hence, for the largest element n € E and for any « € X, we have,
0 =¢(1) <z <P(n). For any x,y € X, since 1 is onto, there exist
i,j € E such that x = 9(i) and y = ¥(j). Now, we define a binary
operation ” @ ” and a unary operation ” *” on X as follows:

@y = {W‘) BSOS = i) = w(?)

(i ©®j) ,otherwise

that the operation ” ®” is defined in Lemma 3.4. First, we show that ” ®”
is well-defined. Let x = x1 and y = y;. Then there exist i,41,7,51 € E
such that z = ¢(l)7xl = 1/)(11),?/ = 7/’(]),y1 = 1/}(]1) Since, Y is a
bijection, then i = iy and j = j;. Now, if i ®j > ntheni1 ®j1 > n
and so x @y = ¢¥(n) = Y(i1 ©® j1) = 1 ® y1. Moreover, if i © j < n
thenij ®j1 <nandsox @y =v(i©®j) =11 ©J1) =1 ®y;. Since,
1 is a bijection, then clearly the operation ” x” is well-defined. Now,
since (E,®,*, 1) is an M V-algebra, then we show that (X, ®, ,0) is an
MYV -algebra. For this, let x = ¥(i),y = ¥(j),z = ¢¥(k) € X where
1,7,k € E.

(MV1): If i ® j > n, then by Lemma 3.4, for any k € E we have,
oG ok =(0)0kzn

Now,let i®j<n. If (i©j)Ok<n,theni®(jOk)=(i0j)0k<n
and if (1 ©®j)©®k=mn,theni® (jOk)=(i®j) ®k =n. Since in any
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cases, (10J) Ok =i1® (j©k), and ¥ is a bijection, then ¢ ((i®j) ®k) =
P(1© (j © k)) and so
oy bz = Pi0)J)@z=9((i0))0k) =v(io (jOFk))
= z®YPJOk) =2 (YD 2).

(MV2): Since i ®j =j@i, thenz®y=¢(10j)=¢(jOi) =ydx.

MV3): Since i ® 1 < n then, by hypothesis, = ® ¢ (1) = ¥ (i) & (1) =
PO 1) =) = .
(MV4): By hypothesis, (z7)" = ((i"))" = (¥(3))" = ¥ () = (i) = @,
(MV5): Since i ©@n > n then, by hypothesis x @ (n) = ¥ (i©n) = ¥ (n).
(MV6): Since (i* ©® j)* ©®j = (j* ®1i)* ®i. We consider the following
cases:

Case 1: y = ¢(j) < ¥(i) = . Then by (1), j < i and so gj <n. In
this case

ey ey = W0 &y =i 0)) 0)) =04 o))

- M;®ﬁ=w@-

n@z

Moreover, in this case we have > n and so

W ©iY) @ = 9(( ©i) ©1)
= w((5 01 0 = (T 01) = v(w) o)
— 1O =)

Case 2: y = ¥(j) > (i) = x. Then by (1), j > i and so, clearly
@ > n and

(Y @zx) D

@ey ey = WG 0H)) ey =i 0)) 0)) =0 o))
= B((E2) 0 ) = p(n") @) = 61 © ) = B().

7
Moreover, in this case we have i < and so

WO 0N = w50 01) = U ©) = vl() <o
= v o =ui)

Therefore, (X, @, *,0) is an MV -algebra.
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Corollary 3.6. For any nonempty countable set X, we can construct
an MV -algebra on X.

Proof. Let X be a nonempty countable set. Then, |X| = |E|, where
E = QN1 n] is infinite countable set in Lemma 3.4, or there exists
k € N such that |X| = |[Wg|. Now, by the Theorems 3.3 and 3.5, the
proof is straightforward. O

Theorem 3.7. Let X be an infinite set. If (X, ®,,0,,%,)isan MV-
algebra, then for any set {a, b}, there exist a binary operation” &”, a
unary operation” *” and constant”0” on X such that (X x{a, b}, ®,*,0)
is an MV -algebra and (X, ®,,*,,0,) = (X x {a,b},®,*,0)

Proof. Since X is an infinite set, then by Lemma 2.5, | X X {a,b}| =
|X|. Now, by Lemma 3.1, the proof is straightforward. O

4. Constructing of Some (Strong) Hyper MV-algebras

Theorem 4.1. Let (M,®,,,*,,,0,,) and (N,®,,*,,0,) be two
MYV -algebras. Then there exist a binary hyperoperation ” &”, a unary
operation ” x” and constant ”0” on M x N, such that (M x N,®,*,0)
is a hyper MV -algebra.

Proof. Let (M, ®,,,*,,,0,,) and (N, ®,,,*,,0,) be two MV-algebras.
For any (mi,n1), (mg,n2) € M x N, we define the binary hyperopera-
tion ” @” on M x N by, (m1,n1)® (ma,n2) = {(m1®,, ma,n1),(m1 &,
ma,n2)} and for any (m,n) € M x N, the unary operation ” x” by,
(m,n)* = *(m,n) = (x,,(m),*,y(n)) = (M*™,n*~) and constant 0 =
(0,,,0,). First, we show that the hyperoperation ” @& ” is well defined.
Let (my,n1) = (m},n}) and (ma,n2) = (mf,n,). Then,

(2)  (mi,n1) @ (me,n2) = {(m1 &, ma,m1), (M1 &, ma,nz)}

= {(m1 ®,, my, ny), (my &, mh,ny)}

= (o)) & (), mh)
Moreover, since (m,n) = (m’,n’) implies that *(m,n) = *(m’,n’) then
7 %7 is well-defined. Now, by some modifications we can show that
(M x N,®,%,0) is a hyper MV-algebra. O

Theorem 4.2. Let (M,®,,,*,,,0,,,S) and (N,®,,*,,0,,<) be
two MV -chains. Then there exist a binary hyperoperation” ®”, a unary
operation ” x” and constant "0” on M x N, such that (M x N,®, x,0)

is a strong hyper MV -algebra.
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Proof. Let (M,®,,,*,,,0,,) be an MV-algebra and (N,®,,%*,,0,)
be an MV-chain. Now, for any (mq,n1),(meo,n2) € M x N, we define
the binary hyperoperation ” & ” on M x N by, (mi,n1) @ (ma,n2) =
{(m1®,,m2,n1), (M1®,,m2,n2)} and for any (m,n) € M x N, the unary
operation ” 7 by, (m,n)* = x(m,n) = (x,,(m),*,(n)) = (m*m ,n*~)
and we let constant 0 = (0,,,0,). By Theorem 4.1, (M x N, ®,*,0) is a
hyper MV-algebra. Now, we define a binary relation 7 < ” on M x N
by, (z,y) < (z,w) if and only if (0,,,0,)* € (z,y)* & (z,w). We show
that for any (z,y),(z,w) € M x N, if (z,y) < (z,w) then z < z and
y S w. For this, let (z,y) < (z,w). Then by the hypothesis,

(0M7ON)* = (0:/170;) € ($,y)* D (Z’w) = (:C*M,y*N) @ (va)
= {(q;*M Dr Z7y*N)7 (‘T*M Dr va)}

and so (0% ,0%) = (z"m @,, z,y"~) or (07,,0%) = (z"m @), z,w).
If (07,,0%) = (z"m @), z,y™~), then y = 0,2 @, z = 07,. Now
since (M, ®,,,*,,,0,,) is an MV-chain, then ¢ < zand y =0, Sw. If
(07,,0%) = (2" @), z,w), then w = 0% ,2"m @©,, z = 07 . Now, since
(N,®y,*y,0y) is an MV-chain, z < z and y < 0}, = w. Hence, in any
cases, we have, z < z and y < w. Therefore, (M x N, @, *,0) is a strong
hyper MV -algebra. O

Lemma 4.3. Let X and Y be two sets such that | X| = |Y|. If
(X,®,,%,,0,) is a (strong) hyper MV -algebra, then there exist a bi-

nary hyperoperation ” @, ”, a unary operation ” *, ” and constant

Y

”0,” onY , such that (Y, @, ,*,,0,) is a strong hyper MV -algebra and
(X’ @X’ >k)(70)() = (Y7 @Y’ >kY70§/)'

Proof. The proof is similar to the proof of Lemma 3.1, by some mod-
ifications. O

Corollary 4.4. Let (M,®,,,*,,,0,,,S) be an MV -chain. Then for
any set {a,b}:
() there exist a binary hyperoperation” @&”, a unary operation” *” and
constant "0” on M x {a,b}, such that (M x {a,b},®,*,0) is a strong
hyper MV -algebra.
(i) If M is infinite, then there exist a binary hyperoperation” ®”, a
unary operation ” x” and constant ”0” on M, such that (M,®,*,0) is
a strong hyper MV -algebra. and (M x {a,b},®,*,0) = (M,®,*,0).

Proof. (i) First, we define the partial relation ” <” on set {a,b} by
<:={(a,a), (b,b),(a,b)}. Hence ({a,b}, <) is a totally ordered set. Now
we consider the following binary and unary operations :
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@[a b
iaband
b|b b

*

a b
b a

Then clearly ({a, b}, a, ®, ) is a the smallest nontrivial M V-chain. Now,
we define the binary hyperoperation ” &” on M X {a,b} as follows:

(m1,t) ® (ma, s) = {(m1 ®©,, ma, 1), (m1 &,, ma,s)}

Similar to proof of Theorem 4.2, (M x {a,b},®,*,0) is a strong hyper
MYV -algebra.

(74) Since M is infinite set, then by Lemmas 2.5 and 4.3, there exist
a binary hyperoperation ” ® 7, a unary operation ” % ” and constant
”0” on M, such that (M,®,*,0) is a strong hyper MV-algebra. and
(M x {a,b},®,*,0) = (M,®,x*,0). O

Theorem 4.5. Let (X, <,z,,y,) be a totally ordered set with small-
est element x, and greatest element y,. Then, there exist a binary hyper-
operation” ®” and a unary operation” x” on X, such that (X, ®, x, z,)
is a (strong) hyper MV -algebra.

Proof. Firstly, if X = {z,,y,}, then by the following tables:

© l’o yo %
i) {CCO, yo} {1’0, yo} and
Yo {xov yo} {moa yo}

(X,®,*,x,) is a (strong) hyper MV -algebra. Now, let | X| > 3. For any
x,y € X, we define a binary hyperoperation ” ®” and unary operation

9 7

x 7 as follows:

Lo Yo
Yo Ty

. Yy Jfr=ua
TOY = {wo, 2y} LifwFy and z* = xo if&":yo
{xmymx} 71f =Y $0 Othel‘Wige

First, we show ” ©® 7 is well-defined. Let x = 2/ and y = ¢/. If z # v,
then, z ©y = {z,,z,y} = {z,,2",y'} =2’ ©y. Now, let x = y. Then,
zOy=A{z,, 2,9} ={z,,2",y,} =2’ ©y'. Hence ” ®” is well-defined.
Clearly the unary operation ” x” is well-defined, too. Now we show that
(X,®,*,2,) is a hyper MV-algebra. Let x,y,z € X. Then,

(HMV1): Case 1: If z =y = 2, then, (zQy) ©2=20 (y© 2).

Case 2: If x =y # z, then, (r O y) ©z ={z,,2,2,y,} =z O (y © 2).
Case 3: If z #y =z, then, (z O y) © z ={z,,2,¥,y,} =2 O (y © 2).
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Case 4: If v = z # y, then, (O y) ©z ={z,,2,y,y,} =2 O (y © 2).
Case 5: If v # z # y, then, (x ©y) © 2z ={z,,z,2,y} =20 (y © 2).
(HMV2): If © # y, then, (zr ©y) = {z,,z,y} = {z,,y,2} = (y © x).
Now let x = y. Then, (z ©y) = {z,,2,y,} = (y © z).

(HMV3): By hypothesis (z*)* = (z*) = «.

(HMV4): Case 1: If z = z, and y = y,, then,
(@ 0y Oy ={y, 2} =WOr)0r=( 0r) O

Case 2: If z = z, and y # y,, then, (z* O y)* Oy = {y,,z,,y} =
(yor)ozr=(y"©x) O
Case 3: If ¢ # 2z, and y = y,, then, (z* O y)* Oy = {y,,2,, 2} =
(yor)ozr=(y"©x) O
Case4: If x # z,, y # y, and © # y, then, (z*Oy)* Oy = {y,, x,, x,y} =
(yozr)ozr=(y*ox) O
(HMV5): By hypothesis © © z, = {z,z,}, then x € z ® z,.

(HMV6): By hypothesis  ® z} = {z,x},z,} then 2} € x © z.
Therefore, (X, ®,*,z,) is a hyper M V-algebra.
(HMVT7): If 2 <« y and y < z, then y, € z* ©y and y, € y* © x.
Since {z,y} ¢ {z,,y,}, then 2* = z and y* = y. This implies that
Yo € ©y =y ©a and by hypothesis x = y.
Therefore, (X, ®,*,x,) is a strong hyper MV -algebra. O

Open Problem 4.6. We proved that any bonded totally ordered set
can be a strong hyper MV -algebra. Let X be an infinite non bounded
totally ordered set. Is there a binary hyperoperation ” @& ”, a unary
operation ” %7 and constant ”0”, such that (X,®,x*,0) is a (strong)
hyper MV -algebra?

5. Fundamental MV -algebras

In this section, by using the notion of fundamental relation, we de-
fine the concept of fundamental MV -algebra and we prove that any
MYV -algebra is a fundamental MV -algebra. Let (M, ®, *,0) be a hyper
MYV-algebra and A be a subset of M. Then with Now, in the following,
the well-known idea of 5* relation on hyperstructure [4, 16, 13] is trans-
ferred and applied to hyper M V-algebras.

Let (M,®,*,0) be a hyper MV-algebra and L£(A) denote the set
of all finite combinations of elements A with & and *. For example,
L{z1,22}) = {21 ® 22,27 & 22, (11 B 22,)*, (21 ® 2,)* D 1,...}.
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Then we set 81 = {(x,x) | * € M} and for every integer n > 1, 3, is
the relation defined as follows:

zfny <= a1, az,...,a,) € X", Ju € L(ay,as,...,a,) st {z,y} Cu
Obviously, for every n > 1, the relations (3, are symmetric, and the

relation g = U By is reflexive and symmetric. Now, let 8* be the
n>1

transitive closure of 8. Then 8* is the smallest strongly regular equiv-

alence relation on M, such that BM* is an MV-algebra. (See [13]).

Theorem 5.1. [14] Let (M, ®;,*;,0;) be a hyper MV-algebra and

B; be a fundamental relation on M;, for any ¢« = 1,2,...,n. Then,
M, xM,x...xM,6 My M M,
5 :6*><B*><...></8*.
Ml><MQ><“,><Mn 1 2 n

Lemma 5.2. Let (M,®, *,0) be a hyper MV -algebra. Then for
the fundamental relation 3* and for any m € M, we have 3*(m*) =
(B*(m))* .

Proof. Let m € M. Forany t € M, ift € *(m*), then there exist n >
1, (a1,a2,...,a,) € M™ and u € L(a1,as,...,a,)such that {m*,t} C u.
Now, since {m,t*} = {(m*)*,t*} = {m*,t}* C u*, then t* € §*(m) and
so f*(m*) C (B*(m))*. Let t € (8*(m))*. Then t* € 5*(m) and there ex-
istn > 1, (a1,a2,...,a,) € M" andu € L(a1,a2,...,a,) that {m,t*} C
u. Now, since {m*,t} = {m*, (t*)*} = {m,t*}* C u*, then t € p*(m*)
and so (5*(m))* C 5*(m*). O

Lemma 5.3. Let (X, ®x,*x,0x) and (Y, ®y, *y,0y) be two hyper
MYV -algebras and f : (X, ®x,*x,0x) — (Y, Dy, *y,0y) be a homomor-
phism. Then for any z,y € X, %y implies that f(x)3; f(y).

Proof. Let (X, ®x,*x,0x) and (Y, ®y,*y,0y) be two hyper MV-
algebras and x,y € X. Since 2%y, then there exists u € L£(X), such
that {z,y} € u. Now, for homomorphism f : (X, ®x,*x,0x) —
(Y, ®y, *y,0y) we have {f(z), f(v)} = f{z,y} C f(u) € L(Y). There-
fore, f(z)B; f(y)- O

Example 5.4. Let (M;,®,,*,,0) and (Ma,®,,*,,0) be two hyper
MYV -algebras by the following tables:

| 0 1 ©) O b !

1

0 (0. (o, 0l 0L Bl L
1

{o; {b1} {b1}
1 [{0,1} {0,1} {v,1} {b,1} {1}




Derivations of MV-algebras from Hyper M V-algebras 655

*9 0 b 1
1 b6 0°
Now, we define the map f : (Ma,®,,*,,0) — (M1, ®,,*,,0) by f(0) =
0 and f(1) = f(b) = 1. Moreover, (1\41,6271*,*1,0) ={pB*(0) = {0,1},8*(0) =
M3,@4 %,, * * *

{0.1}} and 252120 = (54(0) = {0}, 8°(b) = {b,1},6°(b) = {1},
Clearly f is a homomorphism which is not injective and f(b) € 8*(f(1)),
but b & 8(1).

Lemma 5.5. Let (X, ®x, *x,0x) and (Y, ®y, *y, 0y ) be hyper M'V -
algebras and f : (X,®x,*x,0x) — (Y,®y,*y,0y) be a monomor-
phism. Then for any x,y € X, f(x)p; f(y) implies that x5 y.

Proof. For any z,y € X, since f(z)3} f(y), there exists v € L(Y),
such that {f(z), f(y)} € v. Now, for a monomorphism f: X — Y we
have {z,y} = {f7'(f(2)), f'(f(¥)} = F~H{f (@), f)} € f(v) €U.
Therefore, zv7 y. O

Lemma 5.6. Let (X,®x,*x,0x) and (Y, ®y, xy,0y) be two hyper
MYV -algebras and f : (X,®x,*x,0x) = (Y, Py, *y,0y) be an isomor-
phism. Then for any x,y € X, xf%y if and only if f(x)p5 f(y).

Proof. By Lemmas 5.3 and 5.5, the proof is straightforward. 0
Theorem 5.7. Let X and Y be two nonempty sets and |X| = |Y|.

If (X,®,,%,,0,) is a (strong) hyper MV -algebra, then there exist a
binary hyperoperation ” @, ”, a unary operation ” x, ” and constant

”0,” on Y, such that (7()(’@’(6’? ’OX),G) o (70/’@”[’;” ’OY),G).

Proof. Since |X| = |Y|, then by Lemma 4.3, there exist a binary

hyperoperation ” @, ”, a unary operation ” *, 7 and constant 0, on

Y such that (Y, @, ,*,,0, ) is a (strong) hyper M V-algebra. Moreover,
there exists an isomorphism f : (X,®,,*,,0,) — (Y, ®,,%,,0,),
such that f(0,) =0,. Now, we define the map ¢ : (%,@) —
(W,@) by ¢(8*(x)) = B*(f(x)). First, we show that for any
Ty, 1, € X, (67 (2,)BF"(x,)) = (8" (2,))@p(6"(x,)). By Lemma 5.2,
for any z € X,
@(5*(x1)@,3*($2)) = (P(/B*(x1 Dx 372)) = 5*(f(x1 Dx x2))
B (f (@) &y flx,)) = B(f(2,))BB"(f(x,))

(3) = (B (x,))@p(8(,))

Since f is bijection, then ¢ is a bijection. Now, we show that ¢ is well-
defined. Let y,,y, € Y. Then there exist the unique elements x,,z, € X
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such that y, = f(x,) and y, = f(z,). Now, by Equation (3) and Lemma
5.6, 9(5°(2,)) = p(B*(z,)) it and only if B*(f(z,)) = B*(f(z,)) if and
only if f*(x,) = p*(x,). Therefore, ¢ is well-defined and one to one
and by Equation (3), is a homomorphism. Hence ¢ is an isomorphism.

Therefore, (%,@) = ((Y’@Y[;%,@. O

Definition 5.8. An MV-algebra (M,®,,,*,,,0,,), is called a fun-
damental MYV -algebra, if there exists a montrivial hyper MV -algebra

(N, @y, %y,0y), such that (2w 0) ) = (17, o

M 1\1’0]\/1)‘

Theorem 5.9. Every MV -algebra can be a fundamental MV -algebra.

Proof. Let (M,®,,,*,,,0,,) be an MV-algebra. Then by Theorem
4.1, for any MV-algebra (N,®,,*,,0y), (M x N,®,*,(0,,,0,)) is
a hyper MV-algebra. First, we show that for any (a,b) € M x N,
n

B*(a,b) = {(a,z) | © € N}. For this let, u = @(mz,nl) € l(M x N),
i=1
where (m;,n;) € M x N. We have

u:@ml,nz—{@mz, | mi € M,z € N}
i=1

Now, if affect the unary operatlon * on element u, then we obtain
the type u = {(a,z;) | a € M is fized and z; € N}. Hence, for
any (a,b),(c,d) € M x N, (a,b)f*(c,d) if and only if a = ¢. Now,
(MXN,®,%,00,,,0,)) —

we define the map ¢ : ( g @) — (M@, %,,,0,,) by
o(B8*(m,n)) = m. It is clear that 5*(m,n) = *(m/,n’) if and only if
m = m' if and only if p(8*(m,n)) = @(8*(m',n’)). Then, ¢ is well
defined and one to one. In follow, we show that ¢ is a homomorphism.
For this we have,

p(8"(m,n)®B"(m,n)) = (8" (m &, m',n)) = m@M m’
= (8" (m,n)) ©,, @(B*(m',n)).

Moreover, by Lemma 5.2, for any m € M, o((8*(m,n))*) = (,6’*(m n*))
= m* = (e(B*(m,n))* and ¢(8*(0,,,0,)) = OM Clearly, ¢ is onto.
Therefore,  is an isomorphism. O

Corollary 5.10. From every infinite countable set we can construct
a fundamental MV -algebra.

Proof. By Corollary 3.6, there exists a binary operation ” ®”, a unary
operation ” *” and constant 70" such that (M, @, x,0) is an MV -algebra.
Now by Theorem 5.9, (M,®, *,0) is a fundamental MV -algebra. O
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Theorem 5.11. Let (M, ®,*,0) be any finite M'V -algebra. Then for
any binary hyperoperation” @”, unary operation ” x” and constant ”(”
on M, such that (M,®,*,0) is a hyper MV -algebra, there is not any

isomorphic between (M, ®, *,0) and ((M’g%’o),@), that is (M, @, *,0) 2
M7 7*70 VY

Proof. Let (M, ®,*,0) be a finite M V-algebra, |M| =n and ” @” be
a hyperoperation, ” « 7 unary operation and ”0” constant on M, such
that (M,®,*,0) be a hyper MV-algebra. Then there exist z,y € M
such that |z @ y| > 2. Hence, there are m,n € x @ y such that §*(m) =

B*(n). Since BM* = {B*(z) | © € M}, then, \B—A{] < n = |M|. Therefore,

(U220 ) £ (M, @, ,0). O

Now, in the follow we try to show that for any infinite countable set
M, there exist an operation ” @ ”, an unary operation * and constant
0 and a hyperoperation ” @ ” on M, such that (M,®,*,0) is an MV-

algebra and (M, @, *,0) is a hyper M V-algebra. Moreover, (M’g%’o) =

(M, ®,*,0).

Theorem 5.12. Let M be an infinite countable set. Then there exist
an operation” ®”, a unary operation” x” and constant ”0” and a binary
hyperoperation” ®” on M such that ((M’gi;*’o),@) >~ (M,®,*,0). That
is, M is a fundamental MV -algebra of itself.

Proof. Let M be an infinite countable set. Then by Corollary 5.10,
there exist a binary operation ” @,, 7, a unary operation ” * 7 and
constant ”0,,” such that (M,®,,,*,0,,) is an MV-algebra. Moreover,
by Corollary 4.4, there exist a binary hyperoperation ” & ”, a unary
operation ”*” and constant ”(0,,, a)” such that (M x{a, b}, ®, *,(0,,,a))
is a strong hyper MV -algebra and by Theorem 5.7, there exist a binary
hyperoperation ” ®”, a unary operation ” *” and constant ”0” such that

(M, ®,*,0) is a strong hyper MV-algebra and
(M x{a,b}, &, %, (0,,0) o (M,©,%,0)
(4) =
B* B
First, we show that for any (m,t) € M x{a,b}, g*(m,t) = {(m,a), (m,b)}.

For this let u = @(mz,nl) € {(M x{a,b}), where (m;,n;) € M x{a,b}.
i=1
We have

n

U= @(m“nl) = {(@ mi, a), (@ mi, b)}
=1 =1

=1
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Now, if affect the unary operation * on element u. Then we obtain

the type u = {(m,a),(m,b) | m € M is fized} too. Hence, for any

(m,t),(n,s) € M x {a,b}. (m,t)B*(n,s) if and only if m = n.

Now, we define the map ¢ : ((Mx{a’b}’@’*’(OM’a)) ®) — (M, ®,,,%,,,0,,)
s * 9 ? MY MYYM

by ¢(8*(m,t)) = m. It is clear that 8*(m,t) = 8*(m/, s) if and only if

m = m’ if and only if p(5*(m,t)) = p(B*(m',s)). Then, ¢ is well de-

fined and one to one. Now, we show that ¢ is a homomorphism.

For this we have,

p(B"(m, )BF"(m',5)) = @(B"(m By, m',1)) =m @M m’
p(B*(m, 1)) &, @(B"(m, 5)).
Moreover, by Lemma 5.2, for any m € M, o((5 ( ,0)%) = p(B*(m*, %))
=m* (go(ﬂ*( m,t))* and ¢(8*(0,,,a)) =0,, Clearly, ¢ is onto. Hence,
 is an isomorphism and so
(5) ((M X {a7 b}jﬂ?,*7(0hl,a))7
Therefore, by (4) and (5), we have

0 ) (M X {a7 b}7@7 *7 (0M7a)) ~ (M7 ®7 *7 O)
YRR VERY: B = 3

) (M 69]\/17 A/[’OIVI)

12

(M, &
O

Open Problem 5.13. If (M,®,*,0) is an infinite non-countable
MYV -algebra, then is it (M,®,*,0) as a fundamental MV -algebra of
itself?
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