Honam Mathematical J. **38** (2016), No. 3, pp. 643–659 http://dx.doi.org/10.5831/HMJ.2016.38.3.643

DERIVATIONS OF MV-ALGEBRAS FROM HYPER MV-ALGEBRAS

M. Hamidi* and R. A. Borzooei

Abstract. In this paper, we investigate some new results in MV-algebras and (strong) hyper MV-algebras. We show that for any infinite countable set M, we can construct an MV-algebra and a strong hyper MV-algebra on M. Specially, for any infinite totally bounded set, we can construct a strong hyper MV-algebra on it. Then by considering the concept of fundamental relation on hyper MV-algebras, we define the notion of fundamental MV-algebra and prove that any MV-algebra is a fundamental MV-algebra. In practical, we show that any infinite countable MV-algebra is a fundamental MV-algebra is a fundamental MV-algebra.

1. Introduction

MV-algebras introduced by C. C. Chang [2] in 1958 provide an algebraic proof of completeness theorem of infinite valued Lukasewicz propositional calculus. The hyper structure theory was introduced by F. Marty [12] at the 8th congress of Scandinavian Mathematicians in 1934. Since then many researches have worked in this areas. Recently in [5], Sh. Ghorbani, et al. applied the hyperstructure to MV-algebras and introduced the concept of a hyper MV-algebra which is a generalization of an MV-algebra and investigated some related results. Based on [6, 7], L. Torkzadeh , et al. [15], discussed hyper MV-ideals in hyper MV-algebras. In [13, 14], Davvaz et al. are defined the concept of fundamental relation on hyper MV-algebra. But, we show that any MV-algebra is not a fundamental MV-algebra of itself.

2010 Mathematics Subject Classification. $03G25,\,06F35,\,08B30.$

Received October 27, 2015. Accepted September 5, 2016.

Key words and phrases. $MV\-$ algebra, fundamental $MV\-$ algebra, (strong) hyper $MV\-$ algebra.

^{*}Corresponding author

2. Preliminaries

Definition 2.1. [3, 13] Let M be a set with a binary operation " \oplus ", a unary operation "*" and a constant "0". Then, $(M, \oplus, *, 0)$ is called an MV-algebra if it satisfies the conditions (MV1): $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, (MV2): $x \oplus y = y \oplus x$, (MV3): $x \oplus 0 = x$, (MV4): $(x^*)^* = x$, (MV5): $x \oplus 0^* = 0^*$, (MV6): $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$. Let $(M, \oplus, *, 0)$ be an MV-algebra. For any $x, y \in M$, a relation " \leq " which is defined by $x \leq y \iff x^* \oplus y = 0^*$ is a partial order and is called the natural order (See [3]). We call $(M, \oplus, *, 0, \leq)$ is an MV-natural partial ordered and an MV-natural total ordered is an MV-chain. Let $(M, \oplus, *, 0)$ and $(M', \oplus', *', 0')$ be two MV-algebras. A mapping $f : M \to M'$ is called a homomorphism from M into M', if for any $x, y \in X$, $f(x \oplus y) =$ $f(x) \oplus' f(y), f(0) = 0'$ and $f(x^*) = (f(x))^{*'}$. The homomorphism f, is called an isomorphism, if it is onto and one to one.

Definition 2.2. [4] Let H be a nonempty set and $P^*(H)$ be the family of all nonempty subsets of H. Functions $*_{i_H} : H \times H \longrightarrow P^*(H)$, where $i \in \{1, 2, \ldots, n\}$, are called binary hyperoperations. For all $x, y \in H$, $*_{i_H}(x, y)$ is called the hyperproduct of x and y and structure $(H, *_H)$ is called a hypergroupoid. For any two nonempty subsets A and B of hypergropoid H and $x \in H$, we define $A *_H B = \bigcup_{a \in A, b \in B} a *_H b$,

$$A *_{H} x = \bigcup_{a \in A} a *_{H} x \text{ and } x *_{H} B = \bigcup_{b \in B} x *_{H} b$$

Definition 2.3. [13, 14] Let M be a non-empty set, endowed with a binary hyperoperation " \oplus ", a unary operation "*" and a constant "0". Then, $(M, \oplus, *, 0)$ is called a hyper MV-algebra if satisfies the following axioms, (HMV1): $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, (HMV2): $x \oplus y = y \oplus x$, (HMV3): $(x^*)^* = x$, (HMV4): $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$, (HMV5): $0^* \in x \oplus 0^*$, (HMV6): $x \in x \oplus 0$, and we say that hyper MV-algebra M, is a strong hyper MV-algebra, if it satisfies the axiom (HMV7): if $x \ll y$ and $y \ll x$, then x = y, for all $x, y, z \in M$, where $x \ll y$ is defined by $0^* \in x^* \oplus y$. For every subsets A and B of M, we define $A \ll B \iff \exists a \in A$ and $\exists b \in B$ such that $a \ll b$ and $A^* = \{a^* \mid a \in A\}$. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra and R be an equivalence relation on M. If A and B are nonempty subsets of M, then $A\overline{R}B$ means that for all $a \in A$, there exists $b \in B$ such that aRb and for all $b' \in B$, there exists $a' \in A$ such that b'Ra', $A\overline{R}B$ means that for all $a \in A$, and $b \in B$, we have aRb, R is called regular on the right (on the left) if for

all $x \in M$, from aRb, it follows that $(a \circ x)\overline{R}(b \circ x)$ $((x \circ a)\overline{R}(x \circ b))$, R is called strongly regular on the right (on the left) if for all $x \in M$, from aRb, it follows that $(a \circ x)\overline{R}(b \circ x)$ $((x \circ a)\overline{R}(x \circ b))$, R is called regular (strongly regular) if it is regular (strongly regular) on the right and on the left, R is called good if $(a \circ b)R0$ and $(b \circ a)R0$ imply aRb, for all $a, b \in M$.

A totally ordered set (X, 0) is said to be well ordered (or have a well-founded order) if every nonempty subset of X, has a least element. Every finite totally ordered set is well ordered.

Theorem 2.4. [10] (Zermelo's Well-Ordering Theorem) Every set can be well-ordered.

Lemma 2.5. [8] Let X be an infinite set. Then for any set $\{a, b\}$, we have $|X \times \{a, b\}| = |X|$.

Theorem 2.6. [1] Let X and Y be two sets such that |X| = |Y|. If $(Y, \leq, 0)$ is a well-ordered set, then there exists a binary order relation " \leq " on X and $x_0 \in X$, such that (X, \leq, x_0) is a well-ordered set.

3. Constructing of Some *MV*-algebras

In this section, we get some results that we need in the next sections. Specially, we construct an MV-algebra and a strong hyper MV-algebra from a nonempty countable set and any totally ordered set with maximum element. We show that the MV-algebras and the hyper MV-algebras with the same cardinal are isomorphism.

Lemma 3.1. Let X and Y be two sets such that |X| = |Y|. If $(X, \bigoplus_X, *_X, 0_X)$ is an MV-algebra, then there exist a binary operation " \oplus_Y ", a unary operation " $*_Y$ " and constant " 0_Y " on Y, such that $(Y, \bigoplus_Y, *_Y, 0_Y)$ is an MV-algebra and $(X, \bigoplus_X, *_X, 0_X) \cong (Y, \bigoplus_Y, *_Y, 0_Y)$.

Proof. Since |X| = |Y|, then there exists a bijection $\varphi : X \longrightarrow Y$. For any $y_1, y_2 \in Y$, we define the binary operation " \oplus_Y " on Y by, $y_1 \oplus_Y y_2 = \varphi(x_1 \oplus_X x_2)$, where $y_1 = \varphi(x_1)$, $y_2 = \varphi(x_2)$ and $x_1, x_2 \in X$. It is easy to show that \oplus_Y is well-defined. Moreover, for any $y \in Y$ we define the unary operation "*" as $y^* = \varphi(x^*)$, where $x \in X, y = \varphi(x)$ and $0_Y = \varphi(0_X)$. Since φ is a bijection, then the unary operation * is welldefined. Now, by some modification we can show that $(Y, \oplus_Y, *_Y, 0_Y)$ is an MV-algebra. In the follow, we define the map $\theta : (X, \oplus_X, *_X, 0_X) \longrightarrow$ $(Y, \oplus_Y, *_Y, \varphi(0^*_X))$ by $\theta(x) = \varphi(x)$. Since φ is a bijection then θ is a bijection. Now, it is easy to see that θ is a homomorphism and so it is an isomorphism.

Lemma 3.2. For any $k \in \mathbb{N}$, we can construct an *MV*-algebra on $\mathbb{W}_k = \{0, 1, 2, 3, \dots, k-1\}$, which is a chain.

Proof. Let $k \in \mathbb{N}$. We define the binary operation " \odot " and the unary operation "*", on \mathbb{W}_k as follows:

$$x \odot y = \begin{cases} k-1 & \text{, if } x+y \ge k-1 \\ x+y & \text{, otherwise} \end{cases} \quad \text{and} \quad x^* = k - (x+1)$$

Clearly, 0 is the smallest element in $\mathbb{W}_k, k-1 = max(\mathbb{W}_k)$ and for any $x \in \mathbb{W}_k, (x^*)^* = x$. First, we show that " \odot " is well-defined on \mathbb{W}_k . Let x = x' and y = y'. If $x + y \ge k - 1$ then $x' + y' \ge k - 1$ and so $x \odot y = k - 1 = x' \odot y'$. Moreover, if x + y < k - 1 then x' + y' < k - 1 and so $x \odot y = x + y = x' + y' = x' \odot y'$. Now, we show that $(\mathbb{W}_k, \odot, *, 0)$ is an MV-algebra. Let $x, y, z \in \mathbb{W}_k$. Then,

 $\underbrace{(\text{MV1}):}_{\text{Case 1: } x+y \ge k-1. \text{ Then } x+(y+z) = (x+y)+z \ge k-1. \text{ Case 2: } x+y < k-1. \text{ If } (x+y)+z < k-1, \text{ then } x+(y+z) = (x+y)+z < k-1 \text{ and if } (x+y)+z \ge k-1, \text{ then } x+(y+z) = (x+y)+z \ge k-1. \text{ Since in any cases, } (x+y)+z = x+(y+z), \text{ then } (x \odot y) \odot z = x \odot (y \odot z). \text{ (MV2): Since } x+y=y+x, \text{ then } x \odot y = y \odot x.$

 $\overline{\text{(MV3)}}$: By hypothesis, $x \odot 0 = x$.

(MV4): By hypothesis, $0^* = k - 1, (k - 1)^* = 0$ and $(x^*)^* = x$.

(MV5): By hypothesis, $x \odot 0^* = x \odot (k-1) = k - 1 = 0^*$.

(MV6): Case 1: y < x. Then, clearly k - (x + 1) + y < k - 1 and

 $(x^* \odot y)^* \odot y = ((k - (x+1)) \odot y)^* \odot y = (k - (x+1) + y)^* \odot y = (x-y) \odot y = x$ Moreover, in this case we have $k - (1+y) + x \ge (k-1)$ and so

 $(y^* \odot x)^* \odot x = ((k - (1 + y)) \odot x)^* \odot x = (k - 1)^* \odot x = 0 \odot x = x$ Case 2: y > x. Then, clearly $k - (x + 1) + y \ge k - 1$ and

 $(x^* \odot y)^* \odot y = ((k - (x + 1)) \odot y)^* \odot y = (k - 1)^* \odot y = 0 \odot y = y$ Moreover, in this case we have k - (y + 1) + x < k - 1 and so

 $(y^* \odot x)^* \odot x = ((k - (y+1)) \odot x)^* \odot x = (k - (y+1) + x)^* \odot x = (y-x) \odot x = y$ Case 3: y = x. Then, clearly $(x^* \odot y)^* \odot y = (y^* \odot x)^* \odot x$. Therefore, $(\mathbb{W}_k, \odot, *, 0)$ is an MV-algebra.

Now, for any $x, y \in W_k, x \leq y$ if and only if $x^* \odot y = k - 1$ if and only if $(k - (x + 1)) \odot y = k - 1$ if and only if $(k - (x + 1)) + y \geq k - 1$ if and only if $x \leq y$. Therefore, $(W_k, \odot, *, 0, \leq)$ is an *MV*-chain.

Theorem 3.3. Let X be a finite set. Then there exist a binary operation " \oplus_X " and unary operation " $*_X$ " and constant " 0_X " on X, such that $(X, \oplus_X, *_X, 0_X)$, is an *MV*-algebra.

Proof. Let X be a finite set. Then, there exists $k \in \mathbb{W}$ such that $|X| = |\mathbb{W}_k|$. Now, since by Lemma 3.2, $(\mathbb{W}_k, \odot, *, 0)$ is an *MV*-algebra, then by Lemma 3.1, there exist a binary operation " \oplus_x ", a unary operation " \ast_{X} " and constant "0 $_{X}$ " on X , such that $(X,\oplus_{X},\ast_{X},0_{X}),$ is an MV-algebra.

Lemma 3.4. Let $1 < n \in \mathbb{Q}$. Then there exist a binary operation " \odot " and a unary operation "*" on $E = \mathbb{Q} \cap [1 n]$, such that $(E, \odot, *, 1)$ is an MV-algebra.

Proof. For any $1 < n \in E$, we define the binary operation " \odot " and the unary operation "*" on E as follows:

$$x \odot y = \begin{cases} n & , \text{if } xy \ge n \\ xy & , \text{otherwise} \end{cases}$$
 and $x^* = \frac{n}{x}$

Then 1 is the smallest element in E, n = max(E) and for any $x \in E$, $(x^*)^* = x$. First, we show that " \odot " is well-defined on E. Let $x = x_1$ and $y = y_1$. If $xy \ge n$ then $x_1y_1 \ge n$ and so $x \odot y = n = x_1 \odot y_1$. Moreover, if xy < n then $x_1y_1 < n$ and so $x \odot y = xy = x_1y_1 = x_1 \odot y_1$. Clearly "*" is well-defined. Now, we show that $(E, \odot, *, 1)$ is an *MV*-algebra. Let $x, y, z \in E$. Then,

(MV1): If $xy \ge n$, since $z \ge 1$, then $x(yz) = (xy)z \ge n$. Now, let $\overline{xy} < n$. If (xy)z < n, then x(yz) = (xy)z < n and if $(xy)z \ge n$, then $x(yz) = (xy)z \ge n$. Since in any cases, (xy)z = x(yz), then $(x \odot y) \odot z = x \odot (y \odot z).$

(MV2): Since xy = yx, then $x \odot y = y \odot x$.

(MV3): By hypothesis, $x \odot 1 = x$.

 $\overline{(\text{MV4})}$: By hypothesis, $1^* = \frac{n}{1} = n, n^* = \frac{n}{n} = 1$ and $(x^*)^* = x$. (MV5): By hypothesis, $x \odot 1^* = x \odot n = n = 1^*$.

 $\underbrace{(\overline{\text{MV6}})}_{(\frac{ny}{x})^* \odot y} = \frac{n}{\frac{ny}{x}} \odot y = \frac{x}{y} \odot y = x. \text{ Moreover, in this case we have } \frac{nx}{y} > n$ and so $(y^* \odot x)^* \odot x = (\frac{n}{y} \odot x)^* \odot x = n^* \odot x = 1 \odot x = x$. If y > xthen, $\frac{ny}{x} > n$ and $(x^* \odot y)^* \odot y = (\frac{n}{x} \odot y)^* \odot y = n^* \odot y = 1 \odot y = y$.

Moreover, in this case we have $\frac{nx}{y} < n$ and so

$$(y^* \odot x)^* \odot x = (\frac{n}{y} \odot x)^* \odot x = (\frac{nx}{y})^* \odot x = (\frac{n}{\frac{nx}{y}})^* \odot x = \frac{y}{x} \odot x = y$$

If y = x, then clearly $(x^* \odot y)^* \odot y = (y^* \odot x)^* \odot x$. Therefore, $(E, \odot, *, 1)$ is an MV-algebra.

Theorem 3.5. Let X be an infinite countable set. Then there exists a binary operation " \oplus ", a unary operation "*" and constant "0" on X, such that $(X, \oplus, *, 0)$ is an MV-algebra.

Proof. Let X be an infinite countable set. Since $E = \mathbb{Q} \cap [1 \ n]$ in Lemma 3.4, is an infinite countable MV-algebra, so |X| = |E|. Now, by Theorem 2.6, there exist a bijection $\psi : E \longrightarrow X$, a binary relation " \leq " and the smallest element $0 = \psi(1)$ on X such that $(X, \leq, 0)$ is a totally ordered set and for any $t, s \in E$ we have

(1)
$$\psi(t) \le \psi(s)$$
 if and only if $t \le s$.

Hence, for the largest element $n \in E$ and for any $x \in X$, we have, $0 = \psi(1) \leq x \leq \psi(n)$. For any $x, y \in X$, since ψ is onto, there exist $i, j \in E$ such that $x = \psi(i)$ and $y = \psi(j)$. Now, we define a binary operation " \oplus " and a unary operation " *" on X as follows:

$$x \oplus y = \begin{cases} \psi(n) & \text{, if } n \le i \odot j \\ \psi(i \odot j) & \text{, otherwise} \end{cases} \text{ and } x^* = \psi(i^*) = \psi(\frac{n}{i})$$

that the operation " \odot " is defined in Lemma 3.4. First, we show that " \oplus " is well-defined. Let $x = x_1$ and $y = y_1$. Then there exist $i, i_1, j, j_1 \in E$ such that $x = \psi(i), x_1 = \psi(i_1), y = \psi(j), y_1 = \psi(j_1)$. Since, ψ is a bijection, then $i = i_1$ and $j = j_1$. Now, if $i \odot j \ge n$ then $i_1 \odot j_1 \ge n$ and so $x \oplus y = \psi(n) = \psi(i_1 \odot j_1) = x_1 \oplus y_1$. Moreover, if $i \odot j < n$ then $i_1 \odot j_1 < n$ and so $x \oplus y = \psi(i \odot j) = \psi(i_1 \odot j_1) = x_1 \oplus y_1$. Since, ψ is a bijection, then clearly the operation "*" is well-defined. Now, since $(E, \odot, *, 1)$ is an *MV*-algebra, then we show that $(X, \oplus, *, 0)$ is an *MV*-algebra. For this, let $x = \psi(i), y = \psi(j), z = \psi(k) \in X$ where $i, j, k \in E$.

(MV1): If $i \odot j \ge n$, then by Lemma 3.4, for any $k \in E$ we have, $\overline{i \odot (j \odot k)} = (i \odot j) \odot k \ge n$.

Now, let $i \odot j < n$. If $(i \odot j) \odot k < n$, then $i \odot (j \odot k) = (i \odot j) \odot k < n$ and if $(i \odot j) \odot k = n$, then $i \odot (j \odot k) = (i \odot j) \odot k = n$. Since in any

cases, $(i \odot j) \odot k = i \odot (j \odot k)$, and ψ is a bijection, then $\psi((i \odot j) \odot k) = \psi(i \odot (j \odot k))$ and so

$$\begin{aligned} (x \oplus y) \oplus z &= \psi(i \odot j) \oplus z = \psi((i \odot j) \odot k) = \psi(i \odot (j \odot k)) \\ &= x \oplus \psi(j \odot k) = x \oplus (y \oplus z). \end{aligned}$$

 $\underbrace{(\text{MV2}): \text{ Since } i \odot j = j \odot i, \text{ then } x \oplus y = \psi(i \odot j) = \psi(j \odot i) = y \oplus x.}_{(\text{MV3}): \text{ Since } i \odot 1 \le n \text{ then, by hypothesis, } x \oplus \psi(1) = \psi(i) \oplus \psi(1) = \overline{\psi(i \odot 1)} = \psi(i) = x.}$

 $\underbrace{(\text{MV4})}_{\text{(MV5)}}: \text{ By hypothesis, } (x^*)^* = (\psi(i^*))^* = (\psi(\frac{n}{i}))^* = \psi(\frac{n}{\frac{n}{i}}) = \psi(i) = x.$ $\underbrace{(\text{MV5})}_{\text{(MV6)}}: \text{ Since } i \odot n \ge n \text{ then, by hypothesis } x \oplus \psi(n) = \psi(i \odot n) = \psi(n).$ $\underbrace{(\text{MV6})}_{\text{cases:}}: \text{ Since } (i^* \odot j)^* \odot j = (j^* \odot i)^* \odot i. \text{ We consider the following cases:}$

Case 1: $y = \psi(j) < \psi(i) = x$. Then by (1), j < i and so $\frac{n \odot j}{i} < n$. In this case

$$\begin{aligned} (x^* \oplus y)^* \oplus y &= (\psi(i^* \odot j))^* \oplus y = \psi((i^* \odot j)^* \odot j) = \psi((\frac{n}{i} \odot j)^* \odot j) \\ &= \psi(\frac{i}{j} \odot j) = \psi(i). \end{aligned}$$

Moreover, in this case we have $\frac{n\odot i}{j}>n$ and so

$$\begin{aligned} (y^* \oplus x)^* \oplus x &= \psi((j^* \odot i)^*) \oplus x = \psi((j^* \odot i)^* \odot i) \\ &= \psi((\frac{n}{j} \odot i)^* \odot i) = \psi((\frac{n \odot j}{i})^* \odot i) = \psi((n))^* \odot i) \\ &= \psi(1 \odot i) = \psi(i). \end{aligned}$$

Case 2: $y = \psi(j) > \psi(i) = x$. Then by (1), j > i and so, clearly $\frac{n \odot j}{i} > n$ and

$$\begin{aligned} (x^* \oplus y)^* \oplus y &= (\psi(i^* \odot j)^*) \oplus y = \psi((i^* \odot j)^* \odot j) = \psi((\frac{n}{i} \odot j)^* \odot j) \\ &= \psi((\frac{n \odot j}{i})^* \odot j) = \psi((n^*) \odot j) = \psi(1 \odot j) = \psi(j). \end{aligned}$$

Moreover, in this case we have $\frac{ni}{j} < n$ and so

$$\begin{split} \psi((j^* \odot i)^* \odot i) &= \psi((\frac{n}{j} \odot i)^* \odot i) = \psi((\frac{n \odot i}{j})^* \odot i) = \psi((\frac{n}{\frac{n \odot i}{j}})^* \odot i) = \psi((\frac{n}{\frac{n \odot i}{j}}) * \odot i) \\ &= \psi(\frac{j}{i} \odot i) = \psi(j). \end{split}$$

Therefore, $(X, \oplus, *, 0)$ is an *MV*-algebra.

Corollary 3.6. For any nonempty countable set X, we can construct an MV-algebra on X.

Proof. Let X be a nonempty countable set. Then, |X| = |E|, where $E = \mathbb{Q} \cap [1 \ n]$ is infinite countable set in Lemma 3.4, or there exists $k \in \mathbb{N}$ such that $|X| = |\mathbb{W}_k|$. Now, by the Theorems 3.3 and 3.5, the proof is straightforward.

Theorem 3.7. Let X be an infinite set. If $(X, \bigoplus_X, 0_X, *_X)$ is an MV-algebra, then for any set $\{a, b\}$, there exist a binary operation " \oplus ", a unary operation "*" and constant "0" on X such that $(X \times \{a, b\}, \oplus, *, 0)$ is an MV-algebra and $(X, \bigoplus_X, *_X, 0_X) \cong (X \times \{a, b\}, \oplus, *, 0)$

Proof. Since X is an infinite set, then by Lemma 2.5, $|X \times \{a, b\}| = |X|$. Now, by Lemma 3.1, the proof is straightforward.

4. Constructing of Some (Strong) Hyper MV-algebras

Theorem 4.1. Let $(M, \bigoplus_M, *_M, 0_M)$ and $(N, \bigoplus_N, *_N, 0_N)$ be two MV-algebras. Then there exist a binary hyperoperation " \oplus ", a unary operation "*" and constant "0" on $M \times N$, such that $(M \times N, \oplus, *, 0)$ is a hyper MV-algebra.

Proof. Let $(M, \oplus_M, *_M, 0_M)$ and $(N, \oplus_N, *_N, 0_N)$ be two MV-algebras. For any $(m_1, n_1), (m_2, n_2) \in M \times N$, we define the binary hyperoperation " \oplus " on $M \times N$ by, $(m_1, n_1) \oplus (m_2, n_2) = \{(m_1 \oplus_M m_2, n_1), (m_1 \oplus_M m_2, n_2)\}$ and for any $(m, n) \in M \times N$, the unary operation "*" by, $(m, n)^* = *(m, n) = (*_M(m), *_N(n)) = (m^{*_M}, n^{*_N})$ and constant $0 = (0_M, 0_N)$. First, we show that the hyperoperation " \oplus " is well defined. Let $(m_1, n_1) = (m'_1, n'_1)$ and $(m_2, n_2) = (m'_2, n'_2)$. Then,

(2)
$$(m_1, n_1) \oplus (m_2, n_2) = \{(m_1 \oplus_M m_2, n_1), (m_1 \oplus_M m_2, n_2)\}$$

= $\{(m'_1 \oplus_M m'_2, n'_1), (m'_1 \oplus_M m'_2, n'_2)\}$
= $(m'_1, n'_1) \oplus (m'_2, n'_2)$

Moreover, since (m, n) = (m', n') implies that *(m, n) = *(m', n') then " * " is well-defined. Now, by some modifications we can show that $(M \times N, \oplus, *, 0)$ is a hyper *MV*-algebra.

Theorem 4.2. Let $(M, \oplus_M, *_M, 0_M, \leq)$ and $(N, \oplus_N, *_N, 0_N, \leq)$ be two *MV*-chains. Then there exist a binary hyperoperation " \oplus ", a unary operation "*" and constant "0" on $M \times N$, such that $(M \times N, \oplus, *, 0)$ is a strong hyper *MV*-algebra.

Proof. Let $(M, \oplus_M, *_M, 0_M)$ be an MV-algebra and $(N, \oplus_N, *_N, 0_N)$ be an MV-chain. Now, for any $(m_1, n_1), (m_2, n_2) \in M \times N$, we define the binary hyperoperation " \oplus " on $M \times N$ by, $(m_1, n_1) \oplus (m_2, n_2) = \{(m_1 \oplus_M m_2, n_1), (m_1 \oplus_M m_2, n_2)\}$ and for any $(m, n) \in M \times N$, the unary operation "*" by, $(m, n)^* = *(m, n) = (*_M(m), *_N(n)) = (m^{*_M}, n^{*_N})$ and we let constant $0 = (0_M, 0_N)$. By Theorem 4.1, $(M \times N, \oplus, *, 0)$ is a hyper MV-algebra. Now, we define a binary relation " \ll " on $M \times N$ by, $(x, y) \ll (z, w)$ if and only if $(0_M, 0_N)^* \in (x, y)^* \oplus (z, w)$. We show that for any $(x, y), (z, w) \in M \times N$, if $(x, y) \ll (z, w)$ then $x \leq z$ and $y \leq w$. For this, let $(x, y) \ll (z, w)$. Then by the hypothesis,

$$\begin{aligned} (0_M, 0_N)^* &= (0_M^*, 0_N^*) \in (x, y)^* \oplus (z, w) = (x^{*_M}, y^{*_N}) \oplus (z, w) \\ &= \{ (x^{*_M} \oplus_M z, y^{*_N}), (x^{*_M} \oplus_M z, w) \} \end{aligned}$$

and so $(0_M^*, 0_N^*) = (x^{*_M} \oplus_M z, y^{*_N})$ or $(0_M^*, 0_N^*) = (x^{*_M} \oplus_M z, w)$. If $(0_M^*, 0_N^*) = (x^{*_M} \oplus_M z, y^{*_N})$, then $y = 0_N, x^{*_M} \oplus_M z = 0_M^*$. Now since $(M, \oplus_M, *_M, 0_M)$ is an MV-chain, then $x \leq z$ and $y = 0_N \leq w$. If $(0_M^*, 0_N^*) = (x^{*_M} \oplus_M z, w)$, then $w = 0_N^*, x^{*_M} \oplus_M z = 0_M^*$. Now, since $(N, \oplus_N, *_N, 0_N)$ is an MV-chain, $x \leq z$ and $y \leq 0_N^* = w$. Hence, in any cases, we have, $x \leq z$ and $y \leq w$. Therefore, $(M \times N, \oplus, *, 0)$ is a strong hyper MV-algebra.

Lemma 4.3. Let X and Y be two sets such that |X| = |Y|. If $(X, \bigoplus_X, *_X, 0_X)$ is a (strong) hyper MV-algebra, then there exist a binary hyperoperation " \bigoplus_Y ", a unary operation " $*_Y$ " and constant " 0_Y " on Y, such that $(Y, \bigoplus_Y, *_Y, 0_Y)$ is a strong hyper MV-algebra and $(X, \bigoplus_X, *_X, 0_X) \simeq (Y, \bigoplus_Y, *_Y, 0_Y)$.

Proof. The proof is similar to the proof of Lemma 3.1, by some modifications. \Box

Corollary 4.4. Let $(M, \bigoplus_M, *_M, 0_M, \leq)$ be an *MV*-chain. Then for any set $\{a, b\}$:

(i) there exist a binary hyperoperation " \oplus ", a unary operation "*" and constant "0" on $M \times \{a, b\}$, such that $(M \times \{a, b\}, \oplus, *, 0)$ is a strong hyper MV-algebra.

(ii) If M is infinite, then there exist a binary hyperoperation " \odot ", a unary operation "*" and constant "0" on M, such that $(M, \odot, *, 0)$ is a strong hyper MV-algebra. and $(M \times \{a, b\}, \oplus, *, 0) \cong (M, \odot, *, 0)$.

Proof. (i) First, we define the partial relation " \leq " on set $\{a, b\}$ by $\leq := \{(a, a), (b, b), (a, b)\}$. Hence $(\{a, b\}, \leq)$ is a totally ordered set. Now we consider the following binary and unary operations :

M. Hamidi and R. A. Borzooei

\oplus	a	b	_	*	9	h
a	a	b	and		a h	0
b	b	b	-		D	a

Then clearly $(\{a, b\}, a, \oplus, *)$ is a the smallest nontrivial MV-chain. Now, we define the binary hyperoperation " \oplus " on $M \times \{a, b\}$ as follows:

$$(m_1, t) \oplus (m_2, s) = \{(m_1 \oplus_M m_2, t), (m_1 \oplus_M m_2, s)\}$$

Similar to proof of Theorem 4.2, $(M \times \{a, b\}, \oplus, *, 0)$ is a strong hyper MV-algebra.

(*ii*) Since M is infinite set, then by Lemmas 2.5 and 4.3, there exist a binary hyperoperation " \odot ", a unary operation "*" and constant "0" on M, such that $(M, \odot, *, 0)$ is a strong hyper MV-algebra. and $(M \times \{a, b\}, \oplus, *, 0) \cong (M, \odot, *, 0)$.

Theorem 4.5. Let (X, \leq, x_0, y_0) be a totally ordered set with smallest element x_0 and greatest element y_0 . Then, there exist a binary hyperoperation " \odot " and a unary operation "*" on X, such that $(X, \odot, *, x_0)$ is a (strong) hyper MV-algebra.

Proof. Firstly, if $X = \{x_0, y_0\}$, then by the following tables:

$$\frac{ \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \odot & x_0 & y_0 \\ \hline \hline x_0 & \{x_0, y_0\} & \{x_0, y_0\} \\ \hline y_0 & \{x_0, y_0\} & \{x_0, y_0\} \end{array}}{ \begin{array}{c|c|c|c|c|c|c|c|c|} \hline x_0 & y_0 \\ \hline \hline & y_0 & x_0 \end{array}} \text{ and } \frac{ \ast & x_0 & y_0 \\ \hline & y_0 & x_0 \end{array}$$

 $(X, \odot, *, x_0)$ is a (strong) hyper MV-algebra. Now, let $|X| \ge 3$. For any $x, y \in X$, we define a binary hyperoperation " \odot " and unary operation "*" as follows:

$$x \odot y = \begin{cases} \{x_0, x, y\} & , \text{if } x \neq y \\ \{x_0, y_0, x\} & , \text{if } x = y \end{cases} \text{ and } x^* = \begin{cases} y_0 & , \text{if } x = x_0 \\ x_0 & , \text{if } x = y_0 \\ x & , \text{otherwise} \end{cases}$$

First, we show " \odot " is well-defined. Let x = x' and y = y'. If $x \neq y$, then, $x \odot y = \{x_0, x, y\} = \{x_0, x', y'\} = x' \odot y'$. Now, let x = y. Then, $x \odot y = \{x_0, x, y_0\} = \{x_0, x', y_0\} = x' \odot y'$. Hence " \odot " is well-defined. Clearly the unary operation "*" is well-defined, too. Now we show that $(X, \odot, *, x_0)$ is a hyper MV-algebra. Let $x, y, z \in X$. Then, (HMV1): Case 1: If x = y = z, then, $(x \odot y) \odot z = x \odot (y \odot z)$. Case 2: If $x = y \neq z$, then, $(x \odot y) \odot z = \{x_0, x, z, y_0\} = x \odot (y \odot z)$. Case 3: If $x \neq y = z$, then, $(x \odot y) \odot z = \{x_0, x, y, y_0\} = x \odot (y \odot z)$.

Case 4: If $x = z \neq y$, then, $(x \odot y) \odot z = \{x_0, x, y, y_0\} = x \odot (y \odot z)$. Case 5: If $x \neq z \neq y$, then, $(x \odot y) \odot z = \{x_0, x, z, y\} = x \odot (y \odot z)$. (HMV2): If $x \neq y$, then, $(x \odot y) = \{x_0, x, y\} = \{x_0, y, x\} = (y \odot x)$. Now let x = y. Then, $(x \odot y) = \{x_0, x, y_0\} = (y \odot x)$. (HMV3): By hypothesis $(x^*)^* = (x^*) = x$. (HMV4): Case 1: If $x = x_0$ and $y = y_0$, then,

$$(x^*\odot y)^*\odot y=\{y_0,x_0\}=(y\odot x)\odot x=(y^*\odot x)^*\odot x$$

Case 2: If $x = x_0$ and $y \neq y_0$, then, $(x^* \odot y)^* \odot y = \{y_0, x_0, y\} = (y \odot x) \odot x = (y^* \odot x)^* \odot x$. Case 3: If $x \neq x_0$ and $y = y_0$, then, $(x^* \odot y)^* \odot y = \{y_0, x_0, x\} = (y \odot x) \odot x = (y^* \odot x)^* \odot x$. Case 4: If $x \neq x_0, y \neq y_0$ and $x \neq y$, then, $(x^* \odot y)^* \odot y = \{y_0, x_0, x, y\} = (y \odot x) \odot x = (y^* \odot x)^* \odot x$. (HMV5): By hypothesis $x \odot x_0 = \{x, x_0\}$, then $x \in x \odot x_0$. (HMV6): By hypothesis $x \odot x_0^* = \{x, x_0^*, x_0\}$ then $x_0^* \in x \odot x_0^*$. Therefore, $(X, \odot, *, x_0)$ is a hyper MV-algebra. (HMV7): If $x \ll y$ and $y \ll x$, then $y_0 \in x^* \odot y$ and $y_0 \in y^* \odot x$. Since $\{x, y\} \not\subseteq \{x_0, y_0\}$, then $x^* = x$ and $y^* = y$. This implies that $y_0 \in x \odot y = y \odot x$ and by hypothesis x = y.

Therefore, $(X, \odot, *, x_0)$ is a strong hyper *MV*-algebra.

Open Problem 4.6. We proved that any bonded totally ordered set can be a strong hyper MV-algebra. Let X be an infinite non bounded totally ordered set. Is there a binary hyperoperation " \oplus ", a unary operation "*" and constant "0", such that $(X, \oplus, *, 0)$ is a (strong) hyper MV-algebra?

5. Fundamental MV-algebras

In this section, by using the notion of fundamental relation, we define the concept of fundamental MV-algebra and we prove that any MV-algebra is a fundamental MV-algebra. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra and A be a subset of M. Then with Now, in the following, the well-known idea of β^* relation on hyperstructure [4, 16, 13] is transferred and applied to hyper MV-algebras.

Let $(M, \oplus, *, 0)$ be a hyper MV-algebra and $\mathcal{L}(A)$ denote the set of all finite combinations of elements A with \oplus and *. For example, $\mathcal{L}(\{x_1, x_2\}) = \{x_1 \oplus x_2, x_1^* \oplus x_2, (x_1 \oplus x_2,)^*, (x_1 \oplus x_2,)^* \oplus x_1, \ldots\}$. Then we set $\beta_1 = \{(x, x) \mid x \in M\}$ and for every integer $n \ge 1$, β_n is the relation defined as follows:

 $x\beta_n y \iff \exists (a_1, a_2, \dots, a_n) \in X^n, \ \exists u \in \mathcal{L}(a_1, a_2, \dots, a_n) \text{ s.t } \{x, y\} \subseteq u$ Obviously, for every $n \ge 1$, the relations β_n are symmetric, and the relation $\beta = \bigcup_{n \ge 1} \beta_n$ is reflexive and symmetric. Now, let β^* be the

transitive closure of β . Then β^* is the smallest strongly regular equivalence relation on M, such that $\frac{M}{\beta^*}$ is an MV-algebra. (See [13]).

Theorem 5.1. [14] Let $(M_i, \oplus_i, *_i, 0_i)$ be a hyper MV-algebra and β_i^* be a fundamental relation on M_i , for any i = 1, 2, ..., n. Then,

$$\frac{M_1 \times M_2 \times \ldots \times M_n}{\beta_{M_1 \times M_2 \times \ldots \times M_n}^*} \cong \frac{M_1}{\beta_1^*} \times \frac{M_2}{\beta_2^*} \times \ldots \times \frac{M_n}{\beta_n^*}.$$

Lemma 5.2. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra. Then for the fundamental relation β^* and for any $m \in M$, we have $\beta^*(m^*) = (\beta^*(m))^*$.

Proof. Let $m \in M$. For any $t \in M$, if $t \in \beta^*(m^*)$, then there exist $n \geq 1$, $(a_1, a_2, \ldots, a_n) \in M^n$ and $u \in \mathcal{L}(a_1, a_2, \ldots, a_n)$ such that $\{m^*, t\} \subseteq u$. Now, since $\{m, t^*\} = \{(m^*)^*, t^*\} = \{m^*, t\}^* \subseteq u^*$, then $t^* \in \beta^*(m)$ and so $\beta^*(m^*) \subseteq (\beta^*(m))^*$. Let $t \in (\beta^*(m))^*$. Then $t^* \in \beta^*(m)$ and there exist $n \geq 1$, $(a_1, a_2, \ldots, a_n) \in M^n$ and $u \in \mathcal{L}(a_1, a_2, \ldots, a_n)$ that $\{m, t^*\} \subseteq u$. Now, since $\{m^*, t\} = \{m^*, (t^*)^*\} = \{m, t^*\}^* \subseteq u^*$, then $t \in \beta^*(m^*)$ and so $(\beta^*(m))^* \subseteq \beta^*(m^*)$.

Lemma 5.3. Let $(X, \oplus_X, *_X, 0_X)$ and $(Y, \oplus_Y, *_Y, 0_Y)$ be two hyper MV-algebras and $f: (X, \oplus_X, *_X, 0_X) \to (Y, \oplus_Y, *_Y, 0_Y)$ be a homomorphism. Then for any $x, y \in X$, $x\beta_X^* y$ implies that $f(x)\beta_Y^* f(y)$.

Proof. Let $(X, \oplus_X, *_X, 0_X)$ and $(Y, \oplus_Y, *_Y, 0_Y)$ be two hyper MValgebras and $x, y \in X$. Since $x\beta_X^*y$, then there exists $u \in \mathcal{L}(X)$, such that $\{x, y\} \subseteq u$. Now, for homomorphism $f : (X, \oplus_X, *_X, 0_X) \rightarrow$ $(Y, \oplus_Y, *_Y, 0_Y)$ we have $\{f(x), f(y)\} = f\{x, y\} \subseteq f(u) \in \mathcal{L}(Y)$. Therefore, $f(x)\beta_Y^*f(y)$.

Example 5.4. Let $(M_1, \oplus_1, *_1, 0)$ and $(M_2, \oplus_2, *_2, 0)$ be two hyper MV-algebras by the following tables:

$\oplus_2 \mid 0 = 1$ $\oplus_2 \mid 0 = b$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{h \ 1\}$
$0 \{0,1\} \{0,1\} , \frac{-1}{100} , \frac{-1}{1000} , \frac{-1}{1000} (0) (1)$	$\frac{(0,1)}{(1,1)}$ and
$\frac{1}{1 + \{0, 1\}} = \{0, 1\} + $	$\{0,1\}$
$1 \{0, 1\} \{0, 1\} \{b, 1\}$	$\{b, 1\}$

Now, we define the map $f: (M_2, \oplus_2, *_2, 0) \longrightarrow (M_1, \oplus_1, *_1, 0)$ by f(0) = 0 and f(1) = f(b) = 1. Moreover, $\frac{(M_1, \oplus_1, *_1, 0)}{\beta^*} = \{\beta^*(0) = \{0, 1\}, \beta^*(0) = \{0, 1\}\}$ and $\frac{(M_2, \oplus_2, *_2, 0)}{\beta^*} = \{\beta^*(0) = \{0\}, \beta^*(b) = \{b, 1\}, \beta^*(b) = \{b, 1\}\}$. Clearly f is a homomorphism which is not injective and $f(b) \in \beta^*(f(1))$, but $b \notin \beta^*(1)$.

Lemma 5.5. Let $(X, \oplus_X, *_X, 0_X)$ and $(Y, \oplus_Y, *_Y, 0_Y)$ be hyper MValgebras and $f : (X, \oplus_X, *_X, 0_X) \to (Y, \oplus_Y, *_Y, 0_Y)$ be a monomorphism. Then for any $x, y \in X$, $f(x)\beta_Y^*f(y)$ implies that $x\beta_X^*y$.

Proof. For any $x, y \in X$, since $f(x)\beta_Y^*f(y)$, there exists $v \in \mathcal{L}(Y)$, such that $\{f(x), f(y)\} \subseteq v$. Now, for a monomorphism $f: X \to Y$ we have $\{x, y\} = \{f^{-1}(f(x)), f^{-1}(f(y))\} = f^{-1}\{f(x), f(y)\} \subseteq f^{-1}(v) \in U$. Therefore, xv_X^*y .

Lemma 5.6. Let $(X, \oplus_X, *_X, 0_X)$ and $(Y, \oplus_Y, *_Y, 0_Y)$ be two hyper MV-algebras and $f : (X, \oplus_X, *_X, 0_X) \to (Y, \oplus_Y, *_Y, 0_Y)$ be an isomorphism. Then for any $x, y \in X$, $x\beta_X^* y$ if and only if $f(x)\beta_Y^* f(y)$.

Proof. By Lemmas 5.3 and 5.5, the proof is straightforward. \Box

Theorem 5.7. Let X and Y be two nonempty sets and |X| = |Y|. If $(X, \bigoplus_X, *_X, 0_X)$ is a (strong) hyper MV-algebra, then there exist a binary hyperoperation " \bigoplus_Y ", a unary operation " $*_Y$ " and constant " 0_Y " on Y, such that $(\frac{(X, \bigoplus_X, *_X, 0_X)}{\beta^*}, \overline{\circ}) \cong (\frac{(Y, \bigoplus_Y, *_Y, 0_Y)}{\beta^*}, \overline{\circ})$.

Proof. Since |X| = |Y|, then by Lemma 4.3, there exist a binary hyperoperation " \oplus_Y ", a unary operation " $*_Y$ " and constant 0_Y on Y such that $(Y, \oplus_Y, *_Y, 0_Y)$ is a (strong) hyper MV-algebra. Moreover, there exists an isomorphism $f : (X, \oplus_X, *_X, 0_X) \longrightarrow (Y, \oplus_Y, *_Y, 0_Y)$, such that $f(0_X) = 0_Y$. Now, we define the map $\varphi : (\frac{(X, \oplus_X, *_X, 0_X)}{\beta^*}, \overline{\oplus}) \rightarrow$ $(\frac{(Y, \oplus_Y, *_Y, 0_Y)}{\beta^*}, \overline{\oplus})$ by $\varphi(\beta^*(x)) = \beta^*(f(x))$. First, we show that for any $x_1, x_2 \in X, \ \varphi(\beta^*(x_1) \overline{\oplus} \beta^*(x_2)) = \varphi(\beta^*(x_1)) \overline{\oplus} \varphi(\beta^*(x_2))$. By Lemma 5.2, for any $x \in X$,

$$\begin{aligned} \varphi(\beta^*(x_1)\overline{\oplus}\beta^*(x_2)) &= \varphi(\beta^*(x_1\oplus_X x_2)) = \beta^*(f(x_1\oplus_X x_2)) \\ &= \beta^*(f(x_1)\oplus_Y f(x_2)) = \beta^*(f(x_1))\overline{\oplus}\beta^*(f(x_2)) \\ \end{aligned} \\ (3) &= \varphi(\beta^*(x_1))\overline{\oplus}\varphi(\beta^*(x_2)) \end{aligned}$$

Since f is bijection, then φ is a bijection. Now, we show that φ is well-defined. Let $y_1, y_2 \in Y$. Then there exist the unique elements $x_1, x_2 \in X$

such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Now, by Equation (3) and Lemma 5.6, $\varphi(\beta^*(x_1)) = \varphi(\beta^*(x_2))$ if and only if $\beta^*(f(x_1)) = \beta^*(f(x_2))$ if and only if $\beta^*(x_1) = \beta^*(x_2)$. Therefore, φ is well-defined and one to one and by Equation (3), is a homomorphism. Hence φ is an isomorphism. Therefore, $(\frac{(X, \oplus_X, *_X, 0_X)}{\beta^*}, \overline{\oplus}) \cong (\frac{(Y, \oplus_Y, *_Y, 0_Y)}{\beta^*}, \overline{\oplus})$.

Definition 5.8. An MV-algebra $(M, \oplus_M, *_M, 0_M)$, is called a fundamental MV-algebra, if there exists a nontrivial hyper MV-algebra $(N, \oplus_N, *_N, 0_N)$, such that $(\frac{(N, \oplus_N, *_N, 0_N)}{\beta^*}, \overline{\oplus}) \cong (M, \oplus_M, *_M, 0_M)$.

Theorem 5.9. Every MV-algebra can be a fundamental MV-algebra.

Proof. Let $(M, \oplus_M, *_M, 0_M)$ be an MV-algebra. Then by Theorem 4.1, for any MV-algebra $(N, \oplus_N, *_N, 0_N)$, $(M \times N, \oplus, *, (0_M, 0_N))$ is a hyper MV-algebra. First, we show that for any $(a, b) \in M \times N$, $\beta^*(a, b) = \{(a, x) \mid x \in N\}$. For this let, $u = \bigoplus_{i=1}^n (m_i, n_i) \in \ell(M \times N)$,

where $(m_i, n_i) \in M \times N$. We have

$$u = \bigoplus_{i=1}^{n} (m_i, n_i) = \{ (\bigoplus_{i=1}^{n} m_i, x) \mid m_i \in M, x \in N \}$$

Now, if affect the unary operation * on element u, then we obtain the type $u = \{(a, x_i) \mid a \in M \text{ is fixed and } x_i \in N\}$. Hence, for any $(a, b), (c, d) \in M \times N$, $(a, b)\beta^*(c, d)$ if and only if a = c. Now, we define the map $\varphi : (\frac{(M \times N, \oplus, *, (0_M, 0_N))}{\beta^*}, \overline{\oplus}) \longrightarrow (M, \oplus_M, *_M, 0_M)$ by $\varphi(\beta^*(m, n)) = m$. It is clear that $\beta^*(m, n) = \beta^*(m', n')$ if and only if m = m' if and only if $\varphi(\beta^*(m, n)) = \varphi(\beta^*(m', n'))$. Then, φ is well defined and one to one. In follow, we show that φ is a homomorphism. For this we have,

$$\begin{aligned} \varphi(\beta^*(m,n)\overline{\oplus}\beta^*(m',n')) &= & \varphi(\beta^*(m\oplus_M m',n)) = m\oplus_M m' \\ &= & \varphi(\beta^*(m,n))\oplus_M \varphi(\beta^*(m',n')). \end{aligned}$$

Moreover, by Lemma 5.2, for any $m \in M$, $\varphi((\beta^*(m, n))^*) = \varphi(\beta^*(m^*, n^*)) = m^* = (\varphi(\beta^*(m, n))^* \text{ and } \varphi(\beta^*(0_M, 0_N)) = 0_M \text{ Clearly, } \varphi \text{ is onto.}$ Therefore, φ is an isomorphism.

Corollary 5.10. From every infinite countable set we can construct a fundamental *MV*-algebra.

Proof. By Corollary 3.6, there exists a binary operation " \oplus ", a unary operation "*" and constant "0" such that $(M, \oplus, *, 0)$ is an MV-algebra. Now by Theorem 5.9, $(M, \oplus, *, 0)$ is a fundamental MV-algebra.

Theorem 5.11. Let $(M, \oplus, *, 0)$ be any finite MV-algebra. Then for any binary hyperoperation " \oplus ", unary operation "*" and constant "0" on M, such that $(M, \oplus, *, 0)$ is a hyper MV-algebra, there is not any isomorphic between $(M, \oplus, *, 0)$ and $(\frac{(M, \oplus, *, 0)}{\beta^*}, \overline{\oplus})$, that is $(M, \oplus, *, 0) \ncong$ $(\frac{(M, \oplus, *, 0)}{\beta^*}, \overline{\oplus})$.

Proof. Let $(M, \oplus, *, 0)$ be a finite MV-algebra, |M| = n and " \oplus " be a hyperoperation, "*" unary operation and "0" constant on M, such that $(M, \oplus, *, 0)$ be a hyper MV-algebra. Then there exist $x, y \in M$ such that $|x \oplus y| \ge 2$. Hence, there are $m, n \in x \oplus y$ such that $\beta^*(m) =$ $\beta^*(n)$. Since $\frac{M}{\beta^*} = \{\beta^*(x) \mid x \in M\}$, then, $|\frac{M}{\beta^*}| < n = |M|$. Therefore, $(\frac{(M, \oplus, *, 0)}{\beta^*}, \overline{\oplus}) \ncong (M, \oplus, *, 0)$.

Now, in the follow we try to show that for any infinite countable set M, there exist an operation " \oplus ", an unary operation * and constant 0 and a hyperoperation " \oplus " on M, such that $(M, \oplus, *, 0)$ is an MV-algebra and $(M, \oplus, *, 0)$ is a hyper MV-algebra. Moreover, $\frac{(M, \oplus, *, 0)}{\beta^*} \cong (M, \oplus, *, 0)$.

Theorem 5.12. Let M be an infinite countable set. Then there exist an operation " \oplus ", a unary operation "*" and constant "0" and a binary hyperoperation " \odot " on M such that $\left(\frac{(M,\odot,*,0)}{\beta^*},\overline{\oplus}\right) \cong (M,\oplus,*,0)$. That is, M is a fundamental MV-algebra of itself.

Proof. Let M be an infinite countable set. Then by Corollary 5.10, there exist a binary operation " \oplus_M ", a unary operation "*" and constant " 0_M " such that $(M, \oplus_M, *, 0_M)$ is an MV-algebra. Moreover, by Corollary 4.4, there exist a binary hyperoperation " \oplus ", a unary operation "*" and constant " $(0_M, a)$ " such that $(M \times \{a, b\}, \oplus, *, (0_M, a))$ is a strong hyper MV-algebra and by Theorem 5.7, there exist a binary hyperoperation " \odot ", a unary operation "*" and constant " $(0_M, a)$ " such that $(M, \otimes, *, 0)$ is a strong hyper MV-algebra and by Theorem 5.7, there exist a binary hyperoperation " \odot ", a unary operation "*" and constant "0" such that $(M, \odot, *, 0)$ is a strong hyper MV-algebra and

(4)
$$\frac{(M \times \{a, b\}, \oplus, *, (0_M, a))}{\beta^*} \cong \frac{(M, \odot, *, 0)}{\beta^*}$$

First, we show that for any $(m,t) \in M \times \{a,b\}$, $\beta^*(m,t) = \{(m,a), (m,b)\}$. For this let $u = \bigoplus_{i=1}^n (m_i, n_i) \in \ell(M \times \{a,b\})$, where $(m_i, n_i) \in M \times \{a,b\}$.

We have

$$u = \bigoplus_{i=1}^{n} (m_i, n_i) = \{ (\bigoplus_{i=1}^{n} m_i, a), (\bigoplus_{i=1}^{n} m_i, b) \}$$

M. Hamidi and R. A. Borzooei

Now, if affect the unary operation * on element u. Then we obtain the type $u = \{(m, a), (m, b) \mid m \in M \text{ is fixed}\}$ too. Hence, for any $(m, t), (n, s) \in M \times \{a, b\}$. $(m, t)\beta^*(n, s)$ if and only if m = n. Now, we define the map $\varphi : (\frac{(M \times \{a, b\}, \oplus, *, (0_M, a))}{\beta^*}, \overline{\oplus}) \longrightarrow (M, \oplus_M, *_M, 0_M)$ by $\varphi(\beta^*(m, t)) = m$. It is clear that $\beta^*(m, t) = \beta^*(m', s)$ if and only if m = m' if and only if $\varphi(\beta^*(m, t)) = \varphi(\beta^*(m', s))$. Then, φ is well defined and one to one. Now, we show that φ is a homomorphism. For this we have,

$$\begin{split} \varphi(\beta^*(m,t)\overline{\oplus}\beta^*(m',s)) &= & \varphi(\beta^*(m\oplus_M m',t)) = m\oplus_M m' \\ &= & \varphi(\beta^*(m,t))\oplus_M \varphi(\beta^*(m',s)). \end{split}$$

Moreover, by Lemma 5.2, for any $m \in M$, $\varphi((\beta^*(m,t))^*) = \varphi(\beta^*(m^*,t^*)) = m^* = (\varphi(\beta^*(m,t))^* \text{ and } \varphi(\beta^*(0_M,a)) = 0_M \text{ Clearly, } \varphi \text{ is onto. Hence, } \varphi \text{ is an isomorphism and so}$

(5)
$$(\frac{(M \times \{a, b\}, \oplus, *, (0_M, a))}{\beta^*}, \overline{\oplus}) \cong (M, \oplus_M, *_M, 0_M)$$

Therefore, by (4) and (5), we have

$$(M, \oplus_M, *_M, 0_M) \cong \frac{(M \times \{a, b\}, \oplus, *, (0_M, a))}{\beta^*} \cong \frac{(M, \odot, *, 0)}{\beta^*}$$

Open Problem 5.13. If $(M, \oplus, *, 0)$ is an infinite non-countable MV-algebra, then is it $(M, \oplus, *, 0)$ as a fundamental MV-algebra of itself?

Acknowledgements. Authors are thankful to learned referees for their valuable suggestions.

References

- R. A. Borzooei, R. Ameri and M. Hamidi, Fundamental Relation on Hyper BCKalgebras, An. Univ. Oradea fasc. Mat., Tom XXI, 1 (2014), 123–137.
- [2] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958) 467–490.
- [3] R. Cignoli, I. M. L. Dottaviano and D. Mundici, *Algebraic Foundations of many*valued Reasoning, Kluwer., 2000.
- [4] P. Corsini, Prolegomena of Hypergroup theory, Second Edition, Aviani Editor., 1993.
- [5] Sh. Ghorbani, A. Hasankhani and E. Eslami, *Hyper MV-algebras*, Set-Valued Math. and Apl., 1(2) (2008), 205–222.
- Sh. Ghorbani, E. Eslami, and A. Hasankhani, *Quotient hyper MV-algebras*, Sci. Math. Jpn., 66(3) (2007), 371–386.

- [7] Sh. Ghorbani, A. Hasankhani, and E. Eslami, *Hyper MV-algebras*, Set-Valued Math. Appl., 1 (2008), 205–222.
- [8] P. R. Halmos, Naive Set Theory, Springer-Verlag, New York., 1974.
- [9] Y. Imai and K. Iseki, On Axiom Systems of Propositional Calculi, XIV, Proc. Japan Acad., 42 (1966), 19–22.
- [10] T. Jech, Set Theory, The 3rd Millennium Edition, Springer Monographs in Mathematics., 2002.
- [11] Y. B. Jun, M. S. Kang, and H. S. Kim, Hyper MV-deductive systems of hyper MV- algebras, Commun. Korean Math. Soc., 25(4) (2010), 537–545.
- [12] F. Marty, Sur une Generalization de la Notion de Groupe, 8th Congres Math. Scandinaves, Stockholm, (1934), 45–49.
- [13] S. Rasouli, D. Heidari and B. Davvaz, η-Relations and Transitivity Conditions of η on Hyper-MV Algebras, J. Mult.-Valued Logic Soft Comput., 15 (2009), 517-524.
- [14] S. Rasouli, D. Heidari and B. Davvaz, Homomorphism, Ideals and Binary Relations on Hyper-MV Algebras, J. Mult.-Valued Logic Soft Comput., 17 (2011), 47–68.
- [15] L. Torkzadeh and A. Ahadpanah, Hyper MV-ideals in hyper MV-algebras, MLQ Math. Log. Q., 56(1) (2010), 51–62.
- [16] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., 1994.

Mohammad Hamidi

Department of Mathematics, Payame Noor University, Tehran, Iran E-mail: m.hamidi@pnu.ac.ir

Rajab Ali Borzooei

Department of Mathematics, Shahid Beheshti University, Tehran, Iran. E-mail: borzooei@sbu.ac.ir