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ON UNIFORM SAMPLING IN SHIFT-INVARIANT
SPACES ASSOCIATED WITH THE FRACTIONAL
FOURIER TRANSFORM DOMAIN

SINUK KANG

Abstract. As a generalization of the Fourier transform, the frac-
tional Fourier transform plays an important role both in theory and
in applications of signal processing. We present a new approach to
reach a uniform sampling theorem in the shift-invariant spaces as-
sociated with the fractional Fourier transform domain.

1. Introduction

A fundamental problem of signal processing is to determine a sig-
nal from its partial information, samples, and to reconstruct the signal
by the samples. A simple version of the classical Whittaker-Shannon-
Kotelnikov (WSK) sampling theorem [8, 12, 17] states that any signal
f(t) band-limited to [—m, 7] is determined by its samples { f(n) : n € Z},
and can be reconstructed via

(1) F(£) =" f(n)sinc(t —n)
nez

—Si?rt“t. WSK sampling expansion (1) converges not only

in L?(R), the space of signals with finite energy, but also absolutely and
uniformly on R. Let PW, := {f € L2(R) N C(R) : supp f C [—m, x|} be
the Paley-Wiener space of signals band-limited to [—m, 7] where we take
the Fourier transfom (FT) as F[f](¢) = (&) := \/%fR f(t)e "dt for
f(t) € LY(R)N L*(R). Classical sampling theory explores a fundamental
question on sampling and reconstruction of signals in PW,. See survey
article [6] for details.

where sinc(t) :=
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Chirp-modulated signals occur often in applications such as sonar
and radar. We denote by

f(t) =T 1 (1)
the chirp-modulated version of f(¢). To investigate sampling theorem of
the chirp-modulated signals, the fractional Fourier transform (FrFT) is
suitable more than FT, which has been proved useful for dealing with in
various applications in signal processing as well as optics [11]. It has also
been used to investigate sampling theorem of chirp-modulated band-

limited signals, in other words, band-limited signals in FrFT domain
[2, 14, 15, 18]. For f € L*(R) and 6 € R we let

) RSN = o) = [ FOKat )t
be FrFT of f(t) with respect to 6 where
St —¢) if0=2mn, neZ
Ky(t, &) =< 6(t+¢§) if0+m=2mn, necZ

C(Q)eia(e)(t2+£2)—ib(9)tf otherwise

is the transformation kernel with ¢(6) = \/%;OW, a(f) = c021:9’ and

b(0) = csch [9, 10]. The FrFT can be extended in L?(R) by a similar
density argument as in FT, and the inverse FrF'T w.r.t. 0 is defined by
the FrFT w.r.t. —6, that is,

£(t) = /R Jol€) K _o(t, €)de.

In the sequel, for the sake of simplicity we write a(f), b(#) and c(0) as
a, b and c, respectively. Note that the FrFT is a unitary operator from
L?(R) onto L?(R) and corresponds to the FT when 6 = .

[N

By definition, f(t) is band-limited to [—~w,w] in FT domain if and only
if f(t) is band-limited to [—w|b|,w|b|] in the FrFT domain. Based on this
observation, one can easily derive a sampling expansion of band-limited
signals in the FrF'T domain by using that of corresponding band-limited
signals in the FT domain [2, 14, 15, 18]. For example, if f(¢) is such
that fy(&) C [—n, 7] then we have

f(t) = e~ iat’ Z f(bn)e*"a(bnysinc%(t —n).
nez
On the other hand, it is well known that PW, is a special case of
shift-invariant spaces (SIS) when its generator is given by the sinc func-
tion. SIS generated by an arbitrary generator has also been thoroughly
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explored by many engineers and mathematicians [6, 16]. General SIS as-
sociated with FrFT is investigated in [1] where the authors use extended
notion of Zak transform and Poisson summation formula to achieve sam-
pling theorem. In [13], FrFT is also used to obtain a useful sampling
expansion.

In this paper we present a new approach to reach a sampling theorem
in SIS associated with FrFT domain. Adapting the idea of [4] we make
use of a bounded invertible mapping from a certain subspace of L?(R)
onto the resulting SIS associated with FrFT domain. As will be seen, the
mapping allows us to benefit from existing sampling theory for signals in
SIS so that sufficient conditions for various sampling scheme to guarantee
perfect reconstruction of a signal in the chirp-modulated SIS can be
achieved.

This paper is organized as follows. In Section 2 we define the notation
and terminology needed throughout the paper. In Section 3 we provide
conditions under which Vp(¢) is generated by some Riesz or frame gen-
erator and becomes a reproducing kernel Hilbert space. In Section 4
we obtain conditions under which a sampling expansion holds on Vp(¢).
Concluding remarks are given in Section 5.

2. Preliminary

We borrow notations from [1] unless otherwise specified.
A sequence {¢, : n € Z} of vectors in a separable Hilbert space H is

e a frame of H with bounds (A, B) if there are constants B > A > 0
such that

AllgI> <D (s, dn)* < Bllol?, ¢ € H;
nez
e a Riesz basis of H with bounds (A, B) if it is complete in H and
there are constants B > A > 0 such that

Alle|> < 1D e(n)enll® < Blie|l?, e = {c(n)}nez € £,
nez
where ||c[|? := Y |e(n)]?.
nez
A Hilbert space H consisting of complex valued functions on a set F
is called a reproducing kernel Hilbert space (RKHS) if there is a function
q(s,t) on E x E, called the reproducing kernel of H, satisfying

e g(-,t) € H for each t in F,
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b <f(8)7Q(87t)> = f(t)7 JEeH.
In an RKHS H any norm converging sequence also converges uniformly
on any subset of E, on which |l¢(-,¢)||3, = q¢(t,t) is bounded. The
reproducing kernel of H is unique and can be obtained by ¢(s,t) =
S ez en(s)en(t) where {e, : n € Z} is an orthonormal basis of H [5].

For ¢(t) € L*(R) let
3)  Colt) == 2 l6(t =)l and Gyo(€) = 3 foo(é + 0

nez nez

Note that [|¢(t)72 ) = [Co(t)llL1j0,1) = 1G0(E)] L10,27/18)-

Bhandari and Zayed [1] studied a chirp-modulated SIS Vj(¢) as a
sampling space where

(4)  Vp(o) := closure {ce ™ 3" d(n)o(t — n) : {d(n)}, € (A(Z)}
nez

and introduced a sampling expansion on Vy(¢). Note here that Vy(¢) is

no longer (integer) shift-invariant and Vz (¢) corresponds to the shift-

invariant space V(¢) := closure {3, 7 d(n)o(t —n) : {d(n)}, € (*(Z)}.

3. Vy(¢) as an RKHS

Suppose that 8 # nm, n € Z. It is not difficult to see that if Gy (&) <
B a.e. on [0,27/|b|] then Vy(¢), defined by (4), is a closed subspace of
L?(R). In the following we assume this condition so that Vy(¢) is well-
defined in L?(R). Then Vj(¢) can be rewritten as

Vy(¢) = spanfce " ¢(t —n) : n € Z}.

The aim of Section 3 is to establish Vp(¢) as an RKHS. In [7], Kim and
Kwon showed that a shift-invariant space V(¢) becomes an RKHS de-
pending on behavior of Cy(t). Their result, however, cannot be directly
applied to Vp(¢) since, as mentioned earlier, Vy(¢) is not shift-invariant.

We first give conditions under which a sequence {c e*"at2$(t —n):
n € Z} is a frame, a Riesz basis or orthonormal basis of Vp(¢).

Proposition 3.1. Let ¢(t) € L?(R) and B > A > 0. Then {c e‘mt2$(t—
n):n €} is
(a) a frame of Vy(¢) with bound (A, B) if and only if

A< Gyp(€) < Bae. on [0,21/[b]] N supp Gy e(E);
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(b) a Riesz basis of Vy(¢) with bound (A, B) if and only if
A< Gyp(&) < B ae. on [0,2m/|b|];

(c) an orthonormal basis of Vy(¢) if and only if G49(§) = 1 a.e. on
[0, 27/[b].

Proof. For ¢(t) € L?(R) let Ty be an operator from ¢*(Z) to Vy(¢)
defined by

()
Ty(d) = (d *g ¢)(t —ce_“”22d (t —n), d = {d(n)}, € £*(Z).
neZ
Then
1To(d)[ 7oy = lId %o @ll72) = |1 Fald %o 6]l 72

o , 2/ o )
= 1O aey = [ 1O Gl

The third equality in the above holds due to Theorem 1 of [19]. For the
rest of the proof we refer to the proof of Theorem 7.1.7 of [3].
O

One can easily see that if Vp(¢) is an RKHS then ¢(t) is well-defined
everywhere on R and Cy(t) < oo for t € R. Conversely, we have:

Proposition 3.2. Let Ty be the operator from (*(Z) to Vy(¢) defined
by (5). Denote by N(Ty)* the orthogonal complement of the null space
N(Ty). Assume that ¢(t) € L*(R) is well-defined pointwise (in Lebesgue
sense) everywhere on R and Cy(t) < oo for t € R.

(a) If{c e*m’gq?(t—n) n € Z} is a frame of Vy(¢) then Vy'(¢) := {(dxg
#)(t) : d € N(Tp)*} is an RKHS in which Cany f(t) = (d *¢ ¢)(1)
s the pointwise limit of ce™ iat® Y onezd(n )qb(t —n).

(b) If {ceiat’ gb( n) :n € Z} is a Riesz basis of Vy(¢) then Vy(¢) is
an RKHS in which any f(t) = (d *g ¢)(t) is the pointwise limit of
e 5y d(n)olt — ). )

(c) If {ceiat® qS(t —n):n € Z} is a frame of Vy(¢), ¢(t) is continuous
on R and supg Cy(t) < oo then Vy(¢) is an RKHS in which any

F(t) = (d *g ¢)(t) is the pointwise limit of ¢ e~"t’ Y mezd(n )qg(t -
n). In this case the pointwise convergence is uniform, so Vy(¢) C

C(R)U L3(R).
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Proof. {c e*mtzq?(t —n):n € Z} is a frame, a Riesz basis, or an or-
thonormal basis of Vp(¢) if and only if {¢(t —n) : n € Z} is a frame, a
Riesz basis, or an orthonormal basis of V(¢), respectively. By Proposi-
tion 2.3 of [7] it suffices to show that (i) the point evaluation operator
() : Vo() — C, defined by I,(f) := f(t) for ¢t € R, is bounded, and (ii)
d € N(Tp) if and only if d € N (T) where T is a pre-frame operator of
{c e_i“t2$(t —n):n €7}

Since Vy(¢) is an isomorphic image of V(gg) being an RKHS, (i) fol-
lows. (ii) is apparent by definition.

O

4. Uniform sampling

Uniform sampling refers to reconstructing a given continuous signal
by its uniformly spaced discrete samples. We achieve sampling expansion
which describe such sampling and reconstruction scheme for signals in

Vo(o).

In what follows we always assume that

e 0F£nmw, nel;

e ¢(t) is well-defined everywhere (in Lebesgue sense) on R;

e there exist constants B > A > 0 such that A < |Gy4(§)| < B a.e.

on [0, 27 /[b];

o Cy(t) < oo forteR.
Then Vy(¢) becomes an RKHS and {ce_i“t2$(t —n):n € Z}is a Riesz
basis of Vy(¢) by Propositions 3.1 and 3.2.

Remark 4.1. In [1], the authors claim that the formula (26) of [1] is
the necessary and sufficient condition for {¢(t—n) : n € Z} to be a Riesz
basis of Vp(¢). However it is the one for {q?(i— n) :n € Z} to be a Riesz
basis of V(¢), but not of Vy(¢). In general {¢p(t —n) : n € Z} is not even
complete in Vy(¢). For instance, let ¢(t) = x[o,1)(t) where x|o1)(t) := 1
for t € [0,1) and 0 otherwise. Then ce*i“tztg(t) = cX[o,1)(t) € Vy(¢) and
(ce " p(t), o[t — n)r2m) = (¢Xo,1)(t); em(t*")zX[o,l)(t —n))2mr) =0
for n € Z\{0}. In order that {¢(t —n) : n € Z} is complete in Vy(¢),
there should be some constant M such that cxjo1)(t) = Mei“tQX[o,l)(t)
for t € R, which is only true if a = a(f) = 0, or equivalently 6 = 5 +nm
for n € Z.
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We now consider the bounded linear operator Jy from L?[0,27/|b|]
into Vy(¢), defined by

(6) (JoF)(t) := (F,ce™ Zyo(t,€)) 120,27 /1])»

where

(7) Zso(t,€) =Y ot —n)e ™ Ko(n, €)
ne’l

is the fractional Zak transform of ¢(t) w.r.t. 6 (cf.[1]).
Proposition 4.2. Jj is an isomorphism from L?[0, 27 /|b|] onto Vp(¢).
Proof. Note that {Ky(n,§) : n € Z} forms an orthonormal basis of

L?[0,27/|b]]. Jy maps the orthonormal basis {Ky(n,§) : n € Z} of

L?[0,27/|b]] to the Riesz basis {ce™ iat? qb( n) :n € Z} of Vy(¢), so it
is bijective. Hence it suffices to show that jg is bounded. This follows

since (o F) ()22 = | Spez dn)ce ot — n)|2,5 < Bld|* =
02
BHF”%z where d = {d(n) = e <F, Kg( n, )>L2[0,27r/|b|] nc Z}

(0,27 /[b]] T/

and B denotes the upper bound of the Riesz basis {ce*iaﬁqﬁ(t —n):n€
R} of Vp(6). =

Notice that Jp has the following properties: For F (&) € L2[0,2x/|b|],
(8) FolToF1(€) = ¢ “CF(€)do();
(9) eiatQJQ[F(-)e_ibk'](t) _ eia(t—k)QjeF(t o k‘)

We are to derive a sampling expansion on Vy(¢) of the following form:
(10) =Y flo+n)Su(t), f € Vo(9)

neR

where 0 < ¢ < 1 and {S,(t) : n € Z} is a Riesz basis or a frame of
Vo(9).

Since Vy(¢) is an RKHS, f(t) is well-defined pointwise (as a Lebesgue
point) on R. Thus we have from (6) that for F(¢) € L2[0,27/[b|],

(11) f(o +n) = (F(€), ¢ Zyg(o, )T+ e=®mE) ooy 1€ Z
where f(t) := (JoF)(t).
Lemma 4.3. Let g(¢) € L?0,27/|b]] and {p(n)}, be a sequence of

complex numbers satistying |p(n)| = 1, n € Z. Then the following are
equivalent:

(a) {g(&)p(n)e=®¢ . n € Z} is a frame of L%[0,2x/|b|] with bounds
(4, B).
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(b) {g(&)p(n)e=™n¢ . n € Z} is a Riesz basis of L*[0,2r/|b|] with
bounds (A, B).
(¢) There exist constants B > A > 0 such that A < 2%|g(¢)|> < B

o]
a.e. on [0,27/|bl].

Proof. Note that {g(&)p(n)e=®" : n € Z} is a frame or a Riesz basis
of L?[0,2x/|b|] if and only if {g(£)e™™"¢ : n € Z} is a frame or a Riesz
basis of L?[0,27/|b], respectively. For F (&) € L2[0,2x/|b]],

D HF©),9(©)e ™) 2 anpgl® = D HF©)g(©), e ™) 210 2oy

nez nez
@27/ IDIF ()97 210,208

for which (a) is equivalent to (c). Since {g(&)e ™ : n € Z} is w-
independent, by Theorem 5.5.4 of [3], (a) is also equivalent to (b). [

Theorem 4.4. Let 0 < o < 1, and let Cy(t) be given by (3). The
following are equivalent:

(a) There is a frame {S,(t) : n € Z} of Vy(¢) such that

(12) = flo+n)Su(t), [ € Va(9).

ne”Z
(b) There is a Riesz basis {Sy(t) : n € Z} of Vy(¢) such that
(13) = flo+n)Su(t), [ € V(o).

nez

(¢) There are constants B > « > 0 such that
(14) a <|Zyp(0,8)] < B, a.e. on [0,2m/b]]
where Zg (-, -) is the fractional Zak transform of ¢, defined by (7).

In this case (12) and (13) converge in L?>(R) and uniformly on a subset
of R on which Cy(t) is bounded, and

(15) Sn(t) _ efiat2 eia(a+n)t2 eia(tfn)zs(t _ n)
where S(t) is in Vy(¢) such that

(16) Sp(€) = M;sz;w’@ a.e. on R.

In addition, Sy(o + k) = 0, for n, k € 7Z.



On sampling in SIS associated with FrF'T domain 621

Proof. Recall from (11) that for F (&) € L?[0,27/|b|] we have
7~ &\ ia(o+n)? _—ibn
flo+n)=(F(§),cZsp(0.8)e (on)"e = £>L2[0,27r/\b|]7 nez
where f(t) := (JpF)(t). Assume (c). Let g(§) = cZy9(0,€) and p(n) =
eia(@+n)®  Then by Lemma 4.3, {CZ(b,g(cT,f)e"a(‘”")Q(f“’”g :n € Z} is
a frame (or a Riesz basis) of L?[0,27/|b|]. It is easy to check that for
some hg(€) € L2[0,27/|b|], {hg(€)eia@tm)®e=in€ .y ¢ Z} is the dual of

{cZ4 (0, g)elaletn)®e=ibné . ) ¢ 7). Thus we obtain a frame (or a Riesz
basis) expansion of F(¢) in L2[0,27/|b|] as

(17) F(€) = f(o+n)hg(¢)e Tt e,
nez
Applying Jp to (17) implies
FO) =" F(o +n)Tolhe(&)e™ ™ =) (1), f(t) € Vo(9),

nez

which proves (a) (or (b)) by setting Sy (t) = Jy[he(€)ei®@+tm?e=ibné](¢).
Now assume (b). Applying je_l to the Riesz basis expansion (13) we
have a Riesz basis expansion in L?[0, 27/|b|]:

FE) = ) flo+n)J; 'S

nez
7 [~ ¢\ ia(o+n)? —ibn —
= > (F(&),cZgp(0, )™ 7T ™) 1oty ooy Ty [Sn] (€)
nez
where F' := J,'[f]. Since the dual of a Riesz basis is also a Riesz

basis, {¢Z4 (0, g)eialotn)® e=ibn€ .y ¢ 71 is a Riesz basis of L2[0, 27 /|b]].
Setting g(§) = cZg9(0,€) and p(n) = ¢i(@+1)* we have (c) by Lemma
4.3.

Recall that for some hy(¢) € L2[0, 27 /|b]

Sn(t) = Tplhg(€)e @@+ =) (1),

Then (15) follows by the property (9). Since {c¢Z4 (0, £)etalotn)?® gibné .
n € Z} and {hg(&)e@@tm)?e=ibn .y ¢ Z} are bi-orthonormal pair in
L?[0,27/|b|] we have (16) by the property (8).

The Riesz basis expansion (13) with f(¢) = S, (¢) and the uniqueness
of coefficients of a basis expansion implies Sy, (0 + k) = 0y, 1, for n,k € Z
where § is Kronecker’s delta function.

Finally the convergence mode follows since Vpy(¢) is an RKHS in which
any L2-convergent sequence converges uniformly where ||go(t,-)|| [2(R) =
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qo(t,t) = Cy(t) is bounded. Here, gy(-,-) denotes the reproducing kernel
of Vy(¢). O

It is easy to see that the conditions given in Theorem 4.4 is also
equivalent to

(d) There are constants 8 > « > 0 such that
all 2@ < D If (o +n)P <BlIfl 72w, f € Vald).

neL

5. Concluding remarks

We address a uniform sampling problem in SIS associated with FrF'T
domain. The method used in the paper allows us to benefit from existing
sampling theory for signals in SIS so that sufficient conditions for various
sampling scheme to guarantee perfect reconstruction of a signal in the
chirp-modulated SIS can be achieved. Generalized sampling problem in
the space will be discussed in the future work.
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