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REGULARITY OF 3D NAVIER-STOKES EQUATIONS

WITH SPECTRAL DECOMPOSITION

Hyosuk Jeong

Abstract. In this paper, we consider the global existence of strong
solutions to the incompressible Navier-Stokes equations on the cu-
bic domain in R3. While the global existence for arbitrary data
remains as an important open problem, we here provide with some
new observations on this matter. We in particular prove the global
existence result when Ω is a cubic domain and initial and forcing
functions are some linear combination of functions of at most two
variables and the like by decomposing the spectral basis differently.

1. Introduction

We consider the initial boundary value problem of the incompressible
Navier-Stokes equations,

du

dt
− ν∆u+ (u · ∇)u+∇p = f,(1)

∇ · u = 0,(2)

over a rectangular box Ω with periodic boundary conditions. Here u
denotes the velocity of a homogeneous, viscous incompressible fluid, f
is the density of force per unit volume, p denotes the pressure, and ν is
the kinematic viscosity. We require that the forcing function f and the
initial data u0 satisfy ∫

Ω
fdx =

∫

Ω
u0dx = 0.(3)

By the classical results of Leray and Hopf ([11], [6]), there exists a
global weak solution of the Navier-Stokes equations. But global strong
solutions have until recently only been guaranteed for small data. See,
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for example, [3], [5], [13], [16] and the references therein. While the
global existence for arbitrary data remains as an important open prob-
lem, we here provide with some new observations on this matter.

In this paper, we split the ambient Hilbert space H into VN and WN

orthogonally by using the Fourier modes, where any function in VN is
a finite linear combination of functions and each typical term has at
most first N Fourier modes for at least one variable and an element in
WN corresponds to the higher frequency mode. Here N denotes the
number of mode used to generate the space VN . In contrast to the
Bubnov-Galerkin approximation ([13]), VN is an infinite dimensional
closed subspace. Moreover it contains all the functions (essentially of two
variables) obtained after averaging in every direction and preserves two
spacial dimensional properties while the first eigenvalue of the Stokes
operator restricted on WN is of order N2. Thus we may apply the
argument used for thin domains by taking N as a new variable instead
of ε.

2. N-S equations with spectral decomposition

We reformulate (1) and (2) in the standard nonlinear evolutionary
equation on a suitable Hilbert space H,

du

dt
+ νAu+B(u, u) = Pf,(4)

where P is the Leray projection of L2(Ω) onto its range H, the space
of divergence-free and average-free vector fields and Au = −P4u is the
Stokes operator with domain

D(A) = H2(Ω) ∩ V, V = H1(Ω) ∩H,

where H2(Ω) and H1(Ω) denote the usual Sobolev spaces. D(A) and V

are equipped with norms ||Au|| and ||A1/2u|| = ||∇u||,(see for example
[3], [13], and [16]). We also define the bilinear form B(u, v) = P(u · ∇)v
and the trilinear form b(u, v, w) by

b(u, v, w) =< B(u, v), w >=

∫

Ω
B(u, v) · wdx.

We will be interested in solutions of (4) with the initial data u0 sat-
isfying

u0 ∈ V.(5)
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We also assume that the forcing function f = f(t) satisfies

f(t) ∈ L∞((0,∞),H) ∩ L2((0,∞),H).(6)

Under these assumption made on u0 and f(t), there exists a local strong
solution u ∈ L∞((0, T ), V ) ∩ L2((0, T ), D(A)) of (4). Thus in order to
extend solutions globally it suffices to control ||∇u(t)|| uniformly on the
interval of local existence, (see for example [3], [13], and [16]).

The space H can be described in terms of the Fourier series expansion
for the function u ∈ L2(Ω). For k = (k1, k2, k3) in the integer lattice Z3,
the Fourier series expansion for u ∈ L2(Ω) is given by

u(x) =
∑

k∈Z3

cke2πik·x,(7)

where ck ∈ C3, ck = c−k, and

ck =

∫

Ω
u(x)e2πik·xdx, k ∈ Z3.

Consequently, one has u ∈ H if and only if c0 = 0,
∑

k∈Z3 |ck|2 < ∞,
and

k1c
k
1 + k2c

k
2 + k3c

k
3 = 0 for all k ∈ Z3.(8)

Similarly one has u ∈ V if and only if u ∈ H and
∑

k∈Z3

|k|2|ck|2 < ∞,

where |k|2 = k21 + k22 + k23.
For any nonnegative integer N , the space H has the natural orthog-

onal decomposition

H = VN ⊕WN .(9)

In fact, for u given by (7), u = v + w and v ∈ VN if and only if

v = v(x) =
∑

cke2πik·x

and the summation is taken over the k = (k1, k2, k3)’s such that |ki| ≤ N
for some i = 1, 2, 3 and w ∈ WN if and only if

w = w(x) =
∑

cke2πik·x

and the summation is taken over the k = (k1, k2, k3)’s such that |ki| > N
for all i = 1, 2, 3.

We will denote by PN and QN the orthogonal projection from H
onto VN and WN respectively. We apply the projections PN and QN to
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the equation (4) with v = PNu and w = QNu. Then, the v-equation
satisfied by v = PNu is

dv

dt
+ νAv + PNB(v + w, v + w) = PNf(10)

and the w-equation satisfied by w = QNu is

dw

dt
+ νAw +QNB(v + w, v + w) = QNf.(11)

In comparison with thin domain case, w(t) ≡ 0 is not an invariant
subspace. Nevertheless by taking w = 0 in (10), we may find an approx-
imation to 3D Navier-Stokes equations:

dv

dt
+ νAv + PNB(v, v) = PNf.

It features 2D Navier-Stokes equations and the global existence of strong
solutions is guaranteed by the estimate (17) below.

It is easy to observe that the Pöincare inequality holds for w ∈ WN ∩
V :

||w||2 ≤ 1

12π2(N + 1)2
||A1/2w||2.(12)

The essential ingredient of our theory is the Sobolev imbedding:

||u||6L6(Ω) ≤ d1Π
3
i=1

(
||u||2 + || ∂u

∂xi
||2
)
,(13)

see Lemma 5.9 of [1]. For v ∈ VN , (13) reads as follows since each term
of v has at most N Fourier mode for at least one variable:

Lemma 2.1. For v ∈ VN , ∀p ≥ 2

(14) ||v||p ≤ CN ||v|| 2p ||A1/2v||1− 2
p .

Proof. For v ∈ VN , the summation is taken over the k = (k1, k2, k3)
′s

such that |ki| ≤ N for some i = 1, 2, 3. Thus we have

v = v1 + v2 + v3

≡
∑

|k1|≤N

cke2πik·x +
∑

|k1|>N,|k2|≤N

cke2πik·x +
∑

|k1|>N,|k2|>N,|k3|≤N

cke2πik·x

Where

v1 =
∑

|k1|≤N

e2πik1x1
∑

k̂=(k2,k3)

c(k1,k̂)e2πik̂·x̂, x̂ = (x2, x3).
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Now,

||v1||p ≤
∑

|k1|≤N

||
∑

k̂=(k2,k3)

c(k1,k̂)e2πik̂·x̂||p

≤
∑

|k1|≤N

C||
∑

k̂=(k2,k3)

c(k1,k̂)e2πik̂·x̂|| 2p ||∇(
∑

k̂=(k2,k3)

c(k1,k̂)e2πik̂·x̂)||1− 2
p

=
∑

|k1|≤N

C

( ∑

k̂=(k2,k3)

|c(k1,k̂)|2
) 1

2
2
p
( ∑

k̂=(k2,k3)

4π2|k̂|2|c(k1,k̂)|2
) 1

2
(1− 2

p
)

≤ CN ||v1||
2
p ||A1/2v1||1−

2
p

Similar inequalities hold for v2, v3 and thus (14).

With the use of this inequality, we find for v ∈ VN

(15) ||v||4 ≤ d2N
1
4 ||v||1/2||A1/2v||1/2.

Moreover for w ∈ WN , one can see from (12) that

(16) ‖w‖4 ≤ d3N
−1/4‖A1/2w‖.

In turn, the auxiliary estimates regarding the trilinear form b(v, v, Av)
can be derived. If v = Pv, then one has

(17) |b(v, v, Av)| ≤ d4N
1/2||v||1/2||A1/2v||||Av||3/2.

Since the first eigenvalue of A restricted on WN grows as N , we may
apply the previous arguments developed for thin domains. But here we
can not take advantage of smallness of w as before because v and w
are linked somehow and w(t) ≡ 0 is not a solution anymore even if we
assume Qf = 0. Instead we here apply a small data argument to prove
the next main result:

Theorem 2.2. The Navier-Stokes equations has a global strong so-
lution whenever u0 = v0 + w0 ∈ VN ⊕WN and f(t) satisfy

(18) ||∇v0|| ≤ k(ν)N1/4, ||∇w0|| ≤ k(ν)N1/4,

(19)

∫ ∞

0

1

νN
||f ||2dt ≤ k(ν)

for some positive constant k(ν) depending only on ν.
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3. The proof of Theorem 2.2

In this section, We give the proof of main result, Theorem 2.2. We
next present estimates for the trilinear form b(·, ·, ·) and its proof depend
heavily on the interpolation inequalities ([1]):

(20) ||u||∞ = ||u||L∞(Ω) ≤ k||A1/2u||1/2||Au||1/2,

(21) ||A1/2u|| ≤ ||u||1/2||Au||1/2.
Here and hereafter, we denote by k universal constants (not depending
on N and ν).

Lemma 3.1. For v, w ∈ D(A) and u ∈ H, the following inequalities
hold:

|b(v, v, u)| ≤ kN1/2||v||1/2||A1/2v||||Av||1/2||u||,(22)

|b(v, w, u)| ≤ k||A1/2v||1/2||Av||1/2||A1/2w||||u||,(23)

|b(w, v, u)| ≤ k||A1/2v||||A1/2w||1/2||Aw||1/2||u||.(24)

Moreover, given w ∈ WN ∩D(A) and u ∈ H, we have

(25) |b(w,w, u)| ≤ kN−1/2||A1/2w||||Aw||||u||.
Proof. For (22), we use the Hölder’s inequality and (15) to get

|b(v, v, u)| ≤ ||v||4||A1/2v||4||u||
≤ k1N

1/4||v||1/2||A1/2v||1/2k2N1/4||A1/2v||1/2||Av||1/2||u||
≤ kN1/2||v||1/2||A1/2v||||Av||1/2||u||.

(23) and (24) are easily derived from (20).
With the use of (22), we have

|b(w,w, u)| ≤ kN1/2||w||1/2||A1/2w||||Aw||1/2||u||
and then, using (12) and (21), we finally get (25).

Lemma 3.2. For v, w ∈ D(A), the following inequalities hold:

|b(v, v,∇w)| ≤ CN2‖v‖2/3‖∇v‖10/3 + 1

3
‖A3/4w‖2,(26)

|b(w,w,∇w)| ≤ C0‖A1/4w‖‖A3/4w‖2,(27)

|b(v, w,∇w)| ≤ CN4‖v‖4/3‖∇v‖8/3‖A1/4w‖2 + 1

3
‖A3/4w‖2,(28)

|b(w, v,∇w)| ≤ C‖A1/4w‖2‖∇v‖4 + 1

3
‖A3/4w‖2.(29)
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Proof. The proof is accomplished by applying the Hölder’s inequality,
the Sobolev imbedding, the Young’s inequality and the Poincaré inequal-
ity. Exactly by the same argument as in the previous lemma.

Multiply A1/2w to the w-equation (11)(For simplicity, we will con-
sider ν = 1 and Pf = 0.) and integrate to obtain

(30)
1

2

d

dt
‖A1/4w‖2 + ‖A3/4w‖2 + (B(u, u), A1/2w) = 0.

From Lemma 3.2 and the Poincaré inequality,

d

dt
‖A1/4w‖2 + (1− 2C0‖A1/4w‖)‖A3/4w‖2

≤ C(1 +N4)‖A1/2v‖4‖A1/4w‖2 + CN2‖A1/2v‖4.
Let us assume that

1− 2C0‖A1/4w(t)‖ < 0 for 0 ≤ t < T.

Then by the Grönwall inequality

‖A1/4w(t)‖2 ≤ exp

(
C(1 +N4)

∫ T

0
‖A1/2v(τ)‖4dτ

)

[
‖A1/4w(0)‖2 + CN2

∫ T

0
‖A1/2v(τ)‖4dτ

]
.

As a consequence we come to a conclusion:

Theorem 3.3. For some constants k1, k2, there exists such that
whenever

(1 +N4)

∫ T

0
‖A1/2v(τ)‖4dτ ≤ k1, ‖A1/4w(0)‖ ≤ k2

a global strong solution for the Navier-Stokes equations (4) exists.

We shall write differential inequalities for ‖A1/2v‖2 and ‖A1/2w‖2 at
the same time and derive an estimate for the suitable sum of them.
First of all, taking the scalar product of the v-equation (10) with Av,
we obtain

1

2

d

dt
‖A1/2v‖2 + ν‖Av‖2 + b(u, u,Av) =< PNf,Av >≤ ‖PNf‖‖Av‖.

From the linearity

b(u, u,Av) = b(v, v, Av) + b(v, w,Av) + b(w, v,Av) + b(w,w,Av)
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and by Lemma 3.1, the Hölder inequality and (12)

1

2

d

dt
‖A1/2v‖2 + ν

2
‖Av‖2 ≤ kN2‖v‖2‖A1/2v‖4 + 1

ν
‖PNf‖2

+
k

νN
‖Aw‖2

(
‖A1/2v‖2 + ‖A1/2w‖2 + 1

N
‖A1/2v‖2‖A1/2w‖2

)
.(31)

Similarly taking the scalar product of the w-equation (11) with Aw, we
have

1

2

d

dt
‖A1/2w‖2 + ν‖Aw‖2 + b(u, u,Aw) =< QNf,Aw > .

We then obtain

1

2

d

dt
||A1/2w||2 + ν

2
‖Aw‖2 ≤ kN2‖v‖2‖A1/2v‖4 + 1

ν
‖QNf‖2 + ν

2
‖Av‖2

+
k

N2
‖A1/2v‖2‖A1/2w‖2‖Av‖2

+
k√
N

(
‖A1/2v‖+ ‖A1/2w‖

)
‖Aw‖2.(32)

Let us denote

G2 =
1

N
||A1/2v||2 + 1

N
||A1/2w||2.

Then (31) and (32) become

1

2

d

dt
G2 +

(
ν

2
− kG4

)‖Av‖2
N

+

(
ν

2
− kG− k

ν
G2 − k

ν
G4

)‖Aw‖2
N

≤ kN2‖v‖2‖A1/2v‖2G2 +
1

νN
‖f‖2.(33)

Let G = G(k) be the first positive zero for one of

ν

2
− kG4 = 0,

ν

2
− kG− k

ν
G2 − k

ν
G4 = 0.

If we take G(0) < G(k), from the local existence of solution, there would
be the first time t = r > 0 such that u(t) is the unique strong solution
for 0 ≤ t ≤ r, 0 ≤ G(t) < G(k) and G(r) = G(k). For 0 ≤ t ≤ r,

1

2

d

dt
G2 ≤ kN2‖v‖2‖A1/2v‖2G2 +

1

νN
‖f‖2.
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Then integrating, we would have

G(T )2 ≤ exp(2kN2

∫ T

0
‖v‖2‖A1/2v‖2ds)

[
G(0)2 +

∫ T

0

2

νN
||f ||2dt

]

≤ exp(2kN2(‖u0‖2 + 1

νλ1

∫ T

0
‖f(s)‖2ds))

[
G(0)2 +

∫ T

0

2

νN
||f(s)||2ds

]
.

Redefining k(ν) if necessary, this leads a contradiction to the assump-
tions. Therefore G(t) < k(ν) for all t > 0 and the solution becomes
globally regular, which completes all the proofs.
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