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SOME EXISTENCE AND UNIQUENESS THEOREMS

ON ORDERED METRIC SPACES VIA GENERALIZED

DISTANCES UNDER NEW CONTROL FUNCTIONS

Anupam Sharma∗ and Arslan Hojat Ansari

Abstract. The purpose of this paper is to prove some fixed point
theorems in a complete metric space equipped with a partial order-
ing using w-distances together with the aid of an altering functions
and new functions of admissible type.

1. Introduction with Preliminaries

Kada et al. [13] initiated the idea of w-distance which was primarily
utilized to improve Caristi’s fixed point theorem [3], Ekeland’s varia-
tional principle [5] and the nonconvex minimization theorems whose
details are available in Takahashi [25]. Proving existence results on
fixed points on partially ordered metric spaces has been a relatively hot
topic in metric fixed points theory. In [18], a noted analogue of Ba-
nach contraction principle in partially ordered metric space was proved,
which also includes interesting applications to matrix equations. Ran
and Reurings [18] have further weakened the usual contraction condi-
tion but merely up to monotone operators.

In an interesting article, Branciari [2] established a fixed point result
for an integral-type inequality, which is a generalization of Banach con-
traction principle. Vijayaraju et al. [27] obtained a general principle,
which paves the way to prove many fixed point theorems for pair of maps
satisfying integral type contraction conditions.

A multitude of fixed and common fixed point theorems in metric and
semi-metric spaces for compatible, weakly compatible and occasionally
weakly compatible pair of mappings satisfying contractive conditions
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of integral type are proved in several papers (e.g. [15, 17, 27]). In
the same continuation, Suzuki [23] proved that integral type contrac-
tions are Meir-Keeler contractions and further noted that Meir-Keeler
contractions of integral type are still Meir-Keeler contractions. Jachym-
ski [12] also showed that most contractive conditions of integral type
by many authors coincide with classical ones. But he coined a new
contractive condition of integral type which is independent of classical
ones. Recently Popa and Mocanu [17] obtained integral type contrac-
tions employing altering distance function and proved general common
fixed point results for integral type contractive conditions.

In [19], Razani et al. proved a fixed point theorem for (φ, ψ, p)-
contractive mappings on X [i.e. for each x, y ∈ X , φp(T x, T y) ≤ ψφp(x, y)],
which is a new version of the main theorem in [2] employing the notion
of the w-distance. In fact, he proved the following result.

Theorem 1.1. ([19]) Let p be a w-distance on a complete metric
space (X , d), φ be non-decreasing, continuous and φ(ε) > 0 for each
ε > 0 and ψ be non-decreasing, right continuous and ψ(t) < t for all
t > 0. Suppose T is a (φ, ψ, p)- contractive map on X , then T has a
unique fixed point in X . Moreover, lim

n→∞ T nx is a fixed point of T for

each x ∈ X .

In [9] Hossein and Ing-Jer obtained some generalizations of certain
fixed point theorems contained in Kada et al. [13], Hicks and Rhoades
[8] and similar other results with respect to (φ, ψ, p)-contractive maps
on a complete metric space. For further details, see [4, 10, 11, 20, 22].

In this paper, using the concept of w-distance, we prove the fixed
point theorems in partially ordered metric spaces. Our results generalize,
improve and simplify several fixed point results of existing literature.

Before presenting our results, we collect relevant definitions and re-
sults which will be needed in our subsequent discussion.

Definition 1.2. Let X be a nonempty set. Then (X , d,¹) is called
a partially ordered metric space if (X ,¹) is a partially ordered set and
(X , d) is a metric space.

Definition 1.3. Let (X ,¹) be a partially ordered set. Then:
(i) elements x, y ∈ X are called comparable with respect to “ ¹ ” if
either x ¹ y or y ¹ x;
(ii) a mapping T : X → X is called non-decreasing with respect to “ ¹ ”
if x ¹ y implies T x ¹ T y.
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Definition 1.4. ([13]) Let (X , d) be a metric space. Then a function
p : X×X → [0,∞) is called a w-distance on X if the following conditions
are satisfied:

(i) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X ,
(ii) for any x ∈ X , p(x, .) : X → [0,∞) is lower semi-continuous, i.e.,

if x ∈ X and yn → y in X , then p(x, y) ≤ lim infn p(x, yn),
(iii) for any ε > 0, there exists δ > 0 such that p(x, z) ≤ δ and p(z, y) ≤

δ imply d(x, y) ≤ ε.

Example 1.5. ([26]) Let (X , d) be a metric space and g be a contin-
uous mapping from X into itself. Then a function p : X × X → [0,∞)
defined by

p(x, y) = max{d(gx, y), d(gx, gy)} for every x, y ∈ X
is w-distance on X .

Clearly every metric is a w-distance but not conversely, (see Examples
2 and 3, [21]).

Definition 1.6. Let T : X → X be a function.

(a) FT = {x ∈ X |x = T (x)}(i.e. the set of fixed points of T ).
(b) The function T is called Picard operator (briefly, PO) if there

exists x∗ ∈ X such that FT = {x∗} and {T n(x)} converges to x∗,
for all x ∈ X .

(c) The function T is called orbitally U-continuous for any U ⊂ X × X
if the following condition is satisfied:
for any x ∈ X , T ni(x) → a ∈ X as i → ∞, and (T ni(x), a) ∈ U for
any i ∈ N, imply that T ni+1(x) → T a as i → ∞.

Let (X ,¹) be a partially ordered set. Let us denote by X¹ the subset
of X × X defined by:

X¹ = {(x, y) ∈ X × X | x ¹ y or y ¹ x}.
Definition 1.7. A map T : X → X is said to be orbitally continuous

if x ∈ X , and T ni(x) → a ∈ X as i → ∞, imply that T ni+1(x) → T a as
i → ∞.

Suppose

Φ = {φ|φ : [0,∞) → [0,∞)}
where φ is nondecreasing, continuous and φ(ε) > 0 for each ε > 0.
Moreover, let

Ψ = {ψ|ψ : [0,∞) → [0,∞)}
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where ψ is nondecreasing, right continuous and ψ(t) < t for all t > 0.
Also, let

Γ = {γ|γ : [0,∞) → [0,∞)}
where γ is nondecreasing, continuous map and γ(t) = 0 if and only if
t = 0 (cf. [14]).

Example 1.8. Let {an}∞n=1 and {cn}∞n=0 be two non-negative se-
quences such that {an} is strictly decreasing which converges to zero,
and (for each n ∈ N) cn−1an > an+1 where 0 < cn−1 < 1. Define
ψ : [0,∞) → [0,∞) by ψ(0) = 0, ψ(t) = cnt. If an+1 ≤ t < an, ψ(t) = c0t
if t ≥ a1, then ψ is in Ψ.

Now, we state the following two lemmas:

Lemma 1.9. ([21]) If ψ ∈ Ψ, then lim
n→∞ψn(t) = 0 for each t > 0.

Lemma 1.10. ([21]) If φ ∈ Φ (γ ∈ Γ), {an} ⊂ [0,∞) and lim
n→∞φ(an) =

0 ( lim
n→∞ γ(an) = 0), then lim

n→∞ an = 0.

The following two lemmas are crucial in the proofs of our main results.

Lemma 1.11. ([13, 24]) Let (X , d) be a metric space equipped with
a w-distance p. Let {xn} and {yn} be sequences in X whereas {αn}
and {βn} be sequences in [0,∞) converging to zero. Then, the following
conditions hold (for x, y, z ∈ X ):

(a) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for n ∈ N, then y = z. In
particular, if p(x, y) = 0 and p(x, z) = 0, then y = z,

(b) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for n ∈ N, then lim
n→∞ d(yn, z) =

0,
(c) if p(xn, xm) ≤ αn for n,m ∈ N with m > n, then {xn} is a Cauchy

sequence,
(d) if p(y, xn) ≤ αn for n ∈ N, then {xn} is a Cauchy sequence.

Lemma 1.12. ([13]) Let p be a w-distance on metric space (X , d) and
{xn} be a sequence in X such that for each ε > 0 there exists Nε ∈ N
such that m > n > Nε implies p(xn, xm) < ε (or lim

m,n
p(xn, xm) = 0).

Then {xn} is a Cauchy sequence.

Definition 1.13. ([1]) A function g : R+ × R+ → R is a function of
subclass of type I if it satisfies the following:
for y, z ∈ R+, g(1, z) ≤ g(y, z).
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Example 1.14. Define g : R+ × R+ → R by
(1) g(y, z) = (z + l)y, l > 1;
(2) g(y, z) = (y + l)z, l > 1;
(3) g(y, z) = yz;

(4) g(y, z) = (1+y
2 )z;

(5) g(y, z) = ykz;
(6) g(y, z) = z;

(7) g(y, z) = 1+2y
3 z;

(8) g(y, z) = (

n∑
i=0

yi

n+1 )z;

(9) g(y, z) = (

n∑
i=0

yi

n+1 + l)z, l > 1,

for all y, z ∈ R+. Then g is a function of subclass of type I.

Definition 1.15. ([1]) Let f : R+ × R+ −→ R be a mapping. We
say that the pair (f, g) is an upper class of type I if g is a function of
subclass of type I and
1. for 0 ≤ s ≤ 1, t ∈ R+ =⇒ f(s, t) ≤ f(1, t);
2. for z, s, t ∈ R+ if g(1, z) ≤ f(s, t) =⇒ z ≤ st.

Example 1.16. Define g : R+ ×R+ → R and f : R+ ×R+ −→ R by
(1) g(y, z) = (z + l)y, l > 1, f(s, t) = st+ l;
(2) g(y, z) = (y + l)z, l > 1, f(s, t) = (1 + l)st;
(3) g(y, z) = yz, f(s, t) = st;

(4) g(y, z) = (1+y
2 )z, f(s, t) = st;

(5) g(y, z) = ykz, f(s, t) = t;

(6) g(y, z) = 1+2y
3 z, f(s, t) = st;

(7) g(y, z) = (1+y
2 )z, f(s, t) = st;

(8) g(y, z) = (

n∑
i=0

yi

n+1 )z, f(s, t) = st;

(9) g(y, z) = (

n∑
i=0

yi

n+1 + l)z, l > 1, f(s, t) = (1 + l)st,

for all y, z, s, t ∈ R+. Then the pair (f, g) is an upper class of type I.

Definition 1.17. ([1]) A function h : R+×R+×R+ → R is a function
of subclass of type II if it is continuous and satisfies the following:
for x, y, z ∈ R+, h(1, 1, z) ≤ h(x, y, z).

Example 1.18. Define h : R+ × R+ × R+ → R by
(1) h(x, y, z) = (z + l)xy, l > 1;
(2) h(x, y, z) = (xy + l)z, l > 1;
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(3) h(x, y, z) = xyz;
(4) h(x, y, z) = (x+y

2 )z;
(5) h(x, y, z) = xyz;
(6) h(x, y, z) = xz;
(7) h(x, y, z) = x+xy+y

3 z;

(8) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 )z;

(9) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 + l)z, l > 1;

(10) h(x, y, z) = z,
for all x, y, z ∈ R+. Then h is a function of subclass of type II.

Definition 1.19. ([1]) Let f : R+ × R+ −→ R be a mapping. We
say that the pair (f, h) is a upper class of type II if h is a function of
subclass of type II and
1. for 0 ≤ s ≤ 1, t ∈ R+ =⇒ f(s, t) ≤ f(1, t);
2. for z, s, t ∈ R+ if h(1, 1, z) ≤ f(s, t) =⇒ z ≤ st.

Example 1.20. Define h : R+×R+×R+ → R and f : R+×R+ → R
by
(1) h(x, y, z) = (z + l)xy, l > 1, f(s, t) = st+ l;
(2) h(x, y, z) = (xy + l)z, l > 1, f(s, t) = (1 + l)st;
(3) h(x, y, z) = xyz, f(s, t) = st;
(4) h(x, y, z) = (x+y

2 )z, f(s, t) = st;
(5) h(x, y, z) = xyz, f(s, t) = t;
(6) h(x, y, z) = x+xy+y

3 z, f(s, t) = st;

(7) h(x, y, z) = (x+y
2 )z, f(s, t) = st;

(8) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 )z, f(s, t) = st;

(9) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 + l)z, l > 1, f(s, t) = (1 + l)st;

(10) h(x, y, z) = z, f(s, t) = st,
for all x, y, z, s, t ∈ R+. Then the pair (f, h) is an upper class of type II.

Definition 1.21. Let X be a non-empty set and S : X → X a
mapping. Let F ⊆ X . Then F is said to be invariant under S if Sx ∈ F
for every x ∈ F.

Admissible mappings have been defined recently by Samet et al. [22]
and employed quite often in order to generalize the results on various
contractions. We state next the definitions of α-F -admissible mapping,
α-admissible mapping and triangular α-admissible mappings.
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Definition 1.22. Let X be a non-empty set and S : X → X a
mapping. Let F ⊆ X and α : F × F → R+. We say that S is an
α-F -admissible mapping if α(x, y) ≥ 1 implies α(Sx,Sy) ≥ 1, x, y ∈ F.

Note: If in Definition 1.22, F = X , then we say that S is an α-
admissible mapping, see ([22]).

Definition 1.23. ([6]) Let S be a self-mapping on X and α : X ×
X −→ [0,∞) a function. Then S is a triangular α-admissible mapping
if for x, y, z ∈ X
(i) α(x, y) ≥ 1 =⇒ α(Sx,Sy) ≥ 1,
(ii) α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1.

Lemma 1.24. ([6]) Let S be a self-mapping on X and α : X ×X −→
[0,∞) a function. Then S is a triangular α-admissible mapping if there
exists x0 ∈ X such that α(x0,Sx0) ≥ 1, then we have α(Snx0,Smx0) ≥
1, m > n.

Definition 1.25. Let S be a self-mapping on X and α : X × X −→
[0,∞) a function. We say that S is an α-regular function if for {xn} ⊆ X
with {xn} −→ x (∈ X ), α(xn, xn+1) ≥ 1 =⇒ α(xn, x) ≥ 1.

2. On (φ, ψ, p)-Contractive Maps

Now, our main result is as follows:

Theorem 2.1. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ, a pair (f, h) of upper class of type IIand

β : X × X −→ [0, 1] such that

h(α(x,Sx), α(y,Sy), φ(p(Sx,Sy))) ≤ f(β(x, y), ψφ(p(x, y))),

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.
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Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

Proof. If x0 = Sx0 for some x0 ∈ X , then there is nothing to
prove. Otherwise, let there be x0 ∈ X such that x0 6= Sx0, and
(x0,Sx0) ∈ X¹.Owing to monotonocity of S, we can write (Sx0,S2x0) ∈
X¹, α(Sx0,S2x0) ≥ 1. Continuing this process inductively, we obtain

(Snx0,Smx0) ∈ X¹,

for any n,m ∈ N.
Also, we have

α(Snx0,Sn+1x0) ≥ 1.

Now, we proceed to show that

(1) lim
n→∞ p(Snx0,Sn+1x0) = 0.

By using condition (b) and properties of φ, ψ, we get

h(1, 1, φ(p(Snx0,Sn+1x0))

≤ h(α(Sn−1x0,Snx0), α(Snx0,Sn+1x0), φ(p(Snx0,Sn+1x0))

≤ f(β(Sn−1x0,Snx0), ψφ(p(Sn−1x0,Snx0)))

≤ f(1, ψφ(p(Sn−1x0,Snx0))).

Using Definition 1.19, we have

φ(p(Snx0,Sn+1x0) ≤ ψφ(p(Sn−1x0,Snx0)

≤ ψ2φ(p(Sn−2x0,Sn−1x0))

≤ ...

≤ ψn−mφ(p(Smx0,Sm+1x0))

≤ ...

≤ ψnφ(p(x0,Sx0)).(2)

Now, on using Lemma 1.9, lim
n→∞φ(p(Snx0,Sn+1x0)) = 0, which due to

Lemma 1.10 gives rise

lim
n→∞ p(Snx0,Sn+1x0) = 0,

so that (1) is established.
Similarly, we can show

(3) lim
n→∞ p(Sn+1x0,Snx0) = 0.
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Next, we proceed to show

(4) lim
n,m→∞ p(Snx0,Smx0) = 0.

Suppose (4) is untrue. Then we can find a δ > 0 with sequences
{mk}∞k=1, {nk}∞k=1 such that

(5) p(Snkx0,Smkx0) ≥ δ, for all k ∈ {1, 2, 3, · · · },
wherein mk > nk. By (1) there exists k0 ∈ N, such that nk > k0 implies

(6) p(Snkx0,Snk+1x0) < δ.

Notice that in view of (5) and (6) mk 6= nk+1, we can assume that mk

is a minimum index such that (5) holds so that

(7) p(Snkx0,Srx0) < δ, for r ∈ {nk+1, nk+2, · · · ,mk − 1}.
Now (1), (5) and (7) imply

o < δ ≤ p(Snkx0,Smkx0)

≤ p(Snkx0,Smk−1x0) + p(Smk−1x0,Smkx0)

< δ + p(Smk−1x0,Smkx0),

so that

(8) lim
k→∞

p(Snkx0,Smkx0) = δ.

If ε = lim supk p(Snk+1x0,Smk+1x0) ≥ δ, then there exists {kr}∞r=1 such
that

lim
r→∞ p(Snkr+1x0,Smkr+1x0) = ε ≥ δ.

Since φ is continuous and nondecreasing and also (Snkrx0,Smkrx0) ∈
X¹, by using condition (b) and (8), one gets

h(1, 1, φ(p(Snkr+1x0,Smkr+1x0)))

≤ h(α(Snkrx0,Snkr+1x0), α(Smkrx0,Smkr+1x0),

φ(p(Snkr+1x0,Smkr+1x0))

≤ f(β(Snkrx0,Smkrx0), ψφ(p(Snkrx0,Smkrx0)))

≤ f(1, ψφ(p(Snkrx0,Smkrx0)))

=⇒ φ(p(Snkr+1x0,Smkr+1x0)) ≤ ψφ(p(Snkrx0,Smkrx0)),

so,
φ(δ) ≤ φ(ε) = lim

r→∞φ(p(Snkr+1x0,Smkr+1x0)) ≤ ψφ(δ).

Notice that
φp(Snkrx0,Smkrx0) → φ(δ)+,
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and ψ is right continuous, therefore φ(δ) = 0. This is a contradiction
and

lim sup
k

p(Snk+1x0,Smk+1x0) < δ,

so we have

δ ≤ p(Snkx0,Smkx0)

≤ p(Snkx0,Snk+1x0) + p(Snk+1x0,Smk+1x0) + p(Smk+1x0,Smkx0).

On using (1), we have

δ ≤ lim
k→∞

p(Snkx0,Snk+1x0) + lim sup
k

p(Snk+1x0,Smk+1x0)

+ lim
k→∞

p(Smk+1x0,Smkx0)

= lim sup
k

p(Snk+1x0,Smk+1x0) < δ.

which is a contradiction. Thus, (4) is proved.
Owing to Lemma 1.12, {Snx0} is a Cauchy sequence in X . Since X

is complete metric space, there exists x∗ ∈ X such that Snx0 → x∗ as
n → ∞.
Now, we show that x∗ is a fixed point of S. If (c) holds, then Sn+1x0 →
Sx∗ ( as n → ∞). By lower semi-continuity of p(Snx0, .), we have

p(Snx0, x
∗) ≤ lim inf

m→∞ p(Snx0,Smx0) = αn (say),

p(Snx0,Sx∗) ≤ lim inf
m→∞ p(Snx0,Sm+1x0) = βn (say).

By using (4), we have αn, βn → 0 as n → ∞. Now, in view of Lemma
1.11, we conclude that

Sx∗ = x∗.
Next, suppose that (c′) holds. Since {Snkx0} converges to x∗, (Snkx0, x

∗) ∈
X¹ and S is X¹−continuous, it follows that {Snk+1x0} converges to
Sx∗. As earlier, by lower semi-continuity of p(Snx0, .), we conclude
that Sx∗ = x∗.
If Sx = x, we have

h(1, 1, φp(x, x)) ≤ h(α(x, x), α(x, x), φp(x, x))

= h(α(x,Sx), α(x,Sx), φp(Sx,Sx))
≤ f(β(x, x), ψφ(p(x, x)))

=⇒ φp(x, x) ≤ ψφ(p(x, x)) < φp(x, x).

This is a contradiction which amounts to say that φp(x, x) = 0, so that
p(x, x) = 0. This completes the proof.
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Example 2.2. Consider X = [0, 1] which is a complete metric space
under usual metric d(x, y) = |x− y| (for all x, y ∈ X ). Define p(x, y) =
4|x−y| for all x, y ∈ X . Then p is a w-distance on (X , d). Now, consider
X¹ as follows:

X¹ =
{
(x, y) ∈ X × X : x = y or x, y ∈ {0} ∪ { 1

n
: n = 1, 2, 3, ...}},

where “ ¹” be the usual ordering.
Let S : X → X , α : X × X → [0,∞), β : X × X → [0, 1] be given by

S(x) =





0, if x = 0

1

10n− 1
, if x =

1

n

1√
3
, otherwise,

α(x, y) =





1, if x, y = 0

0, otherwise,

β(x, y) = 1.

Obviously, S is a non-decreasing map. Also there is x0 = 0 in X such
that 0 = x0 ¹ Sx0 = 0 i.e., (x0,Sx0) ∈ X¹, α(x0,Sx0) = 1 ≥ 1 and S
satisfies condition (c′). We now show that S satisfies condition (b) for
each φ ∈ Φ and ψ ∈ Ψ. If x = y, condition (b) is satisfied, otherwise we
have α(x,Sx) = 0 or α(y,Sy) = 0

α(x,Sx)α(y,Sy)φp(Sx,Sy) = 0 ≤ β(x, y)ψφ(p(x, y)).

Hence condition (b) is satisfied.
Thus, all the conditions of Theorem 2.1 are satisfied implying thereby
the existence of fixed point of the map S which are indeed two in number
namely: x = 0, 1√

3
.

In Theorem 2.1, if h(x, y, z) = z, f(s, t) = st, β(x, y) = 1, we deduce
the following theorem, see [21].

Theorem 2.3. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p and S : X → X be a nondecreasing
mapping. Suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹,
(b) there exist ψ ∈ Ψ and φ ∈ Φ such that,
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φ(p(Sx,Sy)) ≤ ψ(φ(p(x, y)))

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if x = Sx, then p(x, x) = 0.

Proof. Define α : X × X → R+ by α(x, y) = 1. Then S : X → X
is an α-admissible mapping. So all the conditions of Theorem 2.1 are
satisfied and hence proof is completed.

In Theorem 2.1, if S : X → X is a continuous map, we deduce the
following corollary:

Corollary 2.4. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a continuous,
nondecreasing, α-admissible and α-regular mapping, where α : X ×X →
R+. Also, suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ, a pair (f, h) of upper class of type II

and β : X × X −→ [0, 1] such that

h(α(x,Sx), α(y,Sy), φ(p(Sx,Sy)) ≤ f(β(x, y), ψφ(p(x, y))),

for all (x, y) ∈ X¹. Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥
1, then p(x, x) = 0.

In Theorem 2.1, if h(x, y, z) = xyz, f(s, t) = st, β(x, y) = 1, we
deduce the following corollary:

Corollary 2.5. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ and φ ∈ Φ such that

α(x,Sx), α(y,Sy), φ(p(Sx,Sy)) ≤ ψ(φ(p(x, y))),

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
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(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}
of {Snx0} converging to x∗ such that (Snkx0, x

∗) ∈ X¹ for any
k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

In Theorem 2.1, if h(x, y, z) = (xy + l)z, l > 1, f(s, t) = (1 + l)st, we
deduce the following corollary:

Corollary 2.6. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ and β : X × X −→ [0, 1] such that

(φ(p(Sx,Sy)) + l)α(x,Sx),α(y,Sy) ≤ β(x, y)ψ(φ(p(x, y))) + l, l > 1,

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or,
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

In Theorem 2.3, if S : X → X is a continuous map, we deduce the
following corollary:

Corollary 2.7. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p and S : X → X be a nondecreasing
and continuous mapping. Suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹,
(b) there exist ψ ∈ Ψ and φ ∈ Φ such that,

φ(p(Sx,Sy)) ≤ ψ(φ(p(x, y)))

for all (x, y) ∈ X¹. Then FS 6= ∅. Moreover if x = Sx, then p(x, x) =
0.

In Theorem 2.1, setting φ = I, the identity mapping, we deduce the
following corollary:
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Corollary 2.8. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exists ψ ∈ Ψ, a pair (f, h) of upper class of type II and

β : X × X −→ [0, 1] such that

h(α(x,Sx), α(y,Sy), p(Sx,Sy)) ≤ f(β(x, y), ψ(p(x, y))),

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

Choosing φ = I, the identity mapping and ψ(t) = αt (for all t ∈
[0,∞) and α ∈ [0, 1)) in Theorem 2.1, we deduce the following corollary:

Corollary 2.9. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist a pair (f, h) of upper class of type II and β : X ×X −→

[0, 1] such that

h(α(x,Sx), α(y,Sy), p(Sx,Sy)) ≤ f(β(x, y), αp(x, y)),

for all (x, y) ∈ X¹, where α ∈ [0, 1),

(c) either S is orbitally continuous at x0 or,
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

Suppose, ω : R+ → R+ is Lebesgue-integrable mapping which is
summable and

∫ ε
0 ω(ξ)dξ > 0 for each ε > 0. Now, in Theorem 2.3, set
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φ(t) =
∫ t
0 ω(ξ)dξ and ψ(t) = αt, where φ ∈ Φ and ψ ∈ Ψ and α ∈ [0, 1).

Hence, we can derive the following corollary as a special case:

Corollary 2.10. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p and S : X → X be non-decreasing
mapping. Suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹,
(b) for all (x, y) ∈ X¹,

∫ p(Sx,Sy)

0
ω(ξ)dξ ≤ α

∫ p(x,y)

0
ω(ξ)dξ

(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} which converges to x∗ such that (Snkx0, x
∗) ∈ X¹ for

any k ∈ N.

Then FS 6= ∅. Moreover if x = Sx, then p(x, x) = 0.

We also prove the following theorem:

Theorem 2.11. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Suppose
that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹, α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ, a pair (f, h) of upper class of type II

and β : X × X −→ [0, 1] such that

h(α(x,Sx), α(y,Sy), φ(p(Sx,Sy))) ≤ f(β(x, y), ψφ(p(x, y))),

for all (x, y) ∈ X¹ and
(c”) for every y ∈ X with y 6= Sy,

inf{p(x, y) + p(x,Sx) : x ∈ X} > 0.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

Proof. Observe that the sequence {Snx0} is a Cauchy sequence (in
view of the proof of Theorem 2.1) and so there exists a point x∗ in X such
that lim

n→∞Snx0 = x∗. Since lim
m,n→∞ d(Snx0,Smx0) = 0, therefore for each
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ε > 0 there exists Nε ∈ N such that n > Nε implies p(SNεx0,Snx0) < ε.
Since lim

n→∞Snx0 = x∗ and p(x, .) is lower semi continuous, therefore

p(SNεx0, x
∗) ≤ lim inf

n
p(SNεx0,Snx0) ≤ ε.

Therefore p(SNε , x∗) ≤ ε. Set ε = 1
k , Nε = nk so that

lim
k→∞

p(Snkx0, x
∗) = 0.

Now, assume that x∗ 6= Sx∗. Then due to hypothesis (c”), we have

0 < inf{p(x, x∗) + p(x,Sx) : x ∈ X}
≤ inf{p(Snkx0, x

∗) + p(Snkx0,Snk+1x0) : n ∈ N} → 0,

as n → ∞. This is a contradiction. Hence x∗ = Sx∗.
If Sx = x, we have

h(1, 1, φp(x, x)) ≤ h(α(x, x), α(x, x), φp(x, x))

= h(α(x,Sx), α(x,Sx), φp(Sx,Sx))
≤ f(β(x, x), ψφ(p(x, x)))

=⇒ φp(x, x) ≤ ψφ(p(x, x)) < φp(x, x).

This is a contradiction which amounts to say that φp(x, x) = 0, so that
p(x, x) = 0. This completes the proof.

Corollary 2.12. Replacing condition (c′′), by the hypothesis (c) or
(c′) of Corollary 2.8 (also of Corollary 2.9 or Corollary 2.10) the fixed
point of S continues to exists.

In what follows, we give a sufficient condition for the uniqueness of
fixed point in Theorem 2.1 which runs as follows:
(A): for every x, y ∈ X , there exists a lower bound or an upper bound z
with α(x, z) ≥ 1, α(y, z) ≥ 1 (or α(z, x) ≥ 1, α(z, y) ≥ 1.
In [16], it is proved that condition (A) is equivalent to the following one:
(B): for every x, y ∈ X , there exists z = c(x, y) ∈ X for which (x, z) ∈
X¹, α(x, z) ≥ 1 and (y, z) ∈ X¹, α(y, z) ≥ 1.

Theorem 2.13. With the addition of condition (B) to the hypothe-
ses of Theorem 2.1 (or Theorem 2.11), the fixed point of S turns out to
be unique. Moreover

lim
n→∞Sn(x) = x∗,

for every x ∈ X provided x∗ ∈ FS , i.e., map S : X → X is a Picard
operator.
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Proof. Following the proof of Theorem 2.1, FS 6= ∅. Suppose, there
exist two fixed points x∗ and y∗ of S in X . We prove that

(9) p(y∗, x∗) = 0.

We distinguish two cases:
Case 1: If (y∗, x∗) ∈ X¹. Suppose that p(y∗, x∗) > 0, then by using
condition (b) and property of ψ we get

h(1, 1, φp(y∗, x∗)) ≤ h(α(y∗, y∗), α(x∗, x∗), φp(y∗, x∗))
= h(α(y∗,Sy∗), α(x∗,Sx∗), φp(Sy∗,Sx∗))
≤ f(β(y∗, x∗), ψφ

(
p(y∗, x∗)

)
)

=⇒ φp(y∗, x∗) ≤ β(y∗, x∗)ψφ
(
p(y∗, x∗)

) ≤ ψφ
(
p(y∗, x∗)

)
< φp(y∗, x∗),

which is a contradiction. Therefore we have (9).
Also, in view of Theorem 2.1, we have

(10) p(y∗, y∗) = 0.

On using (9), (10) and Lemma 1.11, we have y∗ = x∗, i.e., the fixed
point of S is unique.
Case 2: If (x∗, y∗) /∈ X¹, then owing to condition (B), there exists z ∈ X
such that (x∗, z) ∈ X¹ ,α(x∗, z) ≥ 1 and (y∗, z) ∈ X¹, α(y∗, z) ≥ 1.
As (z, x∗) ∈ X¹ and (y∗, z) ∈ X¹, proceeding on the lines of proof of
Theorem 2.1, we can prove

lim
n→∞ p(Snz, x∗) = 0 and lim

n→∞ p(Snz, y∗) = 0.

By using Lemma 1.11, we infer that y∗ = x∗, i.e., the fixed point of S is
unique.
Now, we prove

lim
n→∞Sn(x) = x∗,

for every x ∈ X provided x∗ ∈ FS (so α(x∗, x∗) ≥ 1). Let x ∈ X and
(x0, x) ∈ X¹. Proceeding on the lines of proof of Theorem 2.1, we can
prove lim

n→∞ p(Snx0,Snx) = 0, and owing to x∗ ∈ FS and p is a w-distance

(lower semi-continuous), then lim
n→∞ p(Snx0, x

∗) = 0, by Lemma 1.11, we

get
lim
n→∞Snx = x∗.

Suppose x ∈ X and (x0, x) /∈ X¹. Owing to condition (B), there ex-
ists some z in X such that (x0, z) ∈ X¹, α(x0, z) ≥ 1 and (x, z) ∈
X¹, α(x, z) ≥ 1.
Since (x0, z) ∈ X¹, α(x0, z) ≥ 1 and (x, z) ∈ X¹, α(x, z) ≥ 1 by using
condition (b) (proceeding on the lines of proof of Theorem 2.1) we can
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prove lim
n→∞ p(Snx0,Snz) = 0 and lim

n→∞ p(Snz,Snx) = 0.

By triangular inequality, we can write

p(Snx0,Snx) ≤ p(Snx0,Snz) + p(Snz,Snx).

Letting n → ∞, we get lim
n→∞ p(Snx0,Snx) = 0, and also p is a w-

distance (lower semi-continuous) we have lim
n→∞ p(Snx0, x

∗) = 0, which

due to Lemma 1.11 implies

lim
n→∞Snx = x∗.

This completes the proof.

Corollary 2.14. With the addition of condition (B) to the hypothe-
ses of Corollary 2.4 (or Corollaries 2.8, 2.9, 2.10 and 2.12) the fixed point
of S turns out to be unique. Moreover

lim
n→∞Sn(x) = x∗,

for every x ∈ X provided x∗ ∈ FS , i.e., the map S : X → X is a Picard
operator.

Theorem 2.15. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
triangular α-admissible and α-regular mapping, where α : X ×X → R+.
Also, suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ, a pair (f, h) of upper class of type Iand

β : X × X −→ [0, 1] such that

h(α(x, y), φ(p(Sx,Sy))) ≤ f(β(x, y), ψφ(p(x, y))),

for all (x, y) ∈ X¹, where

(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

Proof. If x0 = Sx0 for some x0 ∈ X , then there is nothing to
prove. Otherwise, let there be x0 ∈ X such that x0 6= Sx0, and
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(x0,Sx0) ∈ X¹.Owing to monotonocity of S, we can write (Sx0,S2x0) ∈
X¹, α(Sx0,S2x0) ≥ 1. Continuing this process inductively, we obtain

(Snx0,Smx0) ∈ X¹,

for any n,m ∈ N.
Also due to Lemma 1.24, we have

α(Snx0,Smx0) ≥ 1,m > n.

Now, we proceed to show that

(11) lim
n→∞ p(Snx0,Sn+1x0) = 0.

On using condition (b) and properties of φ and ψ, we get

h(1, φ(p(Snx0,Sn+1x0)) ≤ h(α(Sn−1x0,Snx0), φ(p(Snx0,Sn+1x0))

≤ f(β(Sn−1x0,Snx0), ψφ(p(Sn−1x0,Snx0)))

≤ f(1, ψφ(p(Sn−1x0,Snx0))).

Using Definition 1.19, we have

φ(p(Snx0,Sn+1x0) ≤ ψφ(p(Sn−1x0,Snx0)

≤ ψ2φ(p(Sn−2x0,Sn−1x0))

≤ ...

≤ ψn−mφ(p(Smx0,Sm+1x0))

≤ ...

≤ ψnφ(p(x0,Sx0)).(12)

Now, on using Lemma 1.9, lim
n→∞φ(p(Snx0,Sn+1x0)) = 0, which due to

Lemma 1.10 gives rise

lim
n→∞ p(Snx0,Sn+1x0) = 0,

so that (11) is established.
Similarly, we can show

(13) lim
n→∞ p(Sn+1x0,Snx0) = 0.

Next, we proceed to show

(14) lim
n,m→∞ p(Snx0,Smx0) = 0.

Suppose (14) is untrue. Then we can find a δ > 0 with sequences
{mk}∞k=1, {nk}∞k=1 such that

(15) p(Snkx0,Smkx0) ≥ δ, for all k ∈ {1, 2, 3, · · · },
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wherein mk > nk. By (11) there exists k0 ∈ N, such that nk > k0 implies

(16) p(Snkx0,Snk+1x0) < δ.

Notice that in view of (15) and (16) mk 6= nk+1, we can assume that mk

is a minimum index such that (15) holds so that

(17) p(Snkx0,Srx0) < δ, for r ∈ {nk+1, nk+2, · · · ,mk − 1}.
Now (11), (15) and (17) imply

o < δ ≤ p(Snkx0,Smkx0)

≤ p(Snkx0,Smk−1x0) + p(Smk−1x0,Smkx0)

< δ + p(Smk−1x0,Smkx0),

so that

(18) lim
k→∞

p(Snkx0,Smkx0) = δ.

If ε = lim supk p(Snk+1x0,Smk+1x0) ≥ δ, then there exists {kr}∞r=1 such
that

lim
r→∞ p(Snkr+1x0,Smkr+1x0) = ε ≥ δ.

Since φ is continuous and nondecreasing and also (Snkrx0,Smkrx0) ∈
X¹, by using condition (b) and (18), one gets

h(1, φ(p(Snkr+1x0,Smkr+1x0)))

≤ h(α(Snkrx0,Smkrx0), φ(p(Snkr+1x0,Smkr+1x0))

≤ f(β(Snkrx0,Smkrx0), ψφ(p(Snkrx0,Smkrx0)))

≤ f(1, ψφ(p(Snkrx0,Smkrx0)))

=⇒ φ(p(Snkr+1x0,Smkr+1x0)) ≤ ψφ(p(Snkrx0,Smkrx0)),

so,
φ(δ) ≤ φ(ε) = lim

r→∞φ(p(Snkr+1x0,Smkr+1x0)) ≤ ψφ(δ).

Notice that
φp(Snkrx0,Smkrx0) → φ(δ)+,

and ψ is right continuous, therefore φ(δ) = 0. This is a contradiction
and

lim sup
k

p(Snk+1x0,Smk+1x0) < δ,

so we have

δ ≤ p(Snkx0,Smkx0)

≤ p(Snkx0,Snk+1x0) + p(Snk+1x0,Smk+1x0) + p(Smk+1x0,Smkx0).
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On using (11), we have

δ ≤ lim
k→∞

p(Snkx0,Snk+1x0) + lim sup
k

p(Snk+1x0,Smk+1x0)

+ lim
k→∞

p(Smk+1x0,Smkx0)

= lim sup
k

p(Snk+1x0,Smk+1x0) < δ.

which is a contradiction. Thus, (14) is proved.
Owing to Lemma 1.12, {Snx0} is a Cauchy sequence in X . Since X

is complete metric space, there exists x∗ ∈ X such that Snx0 → x∗ as
n → ∞.
Now, we show that x∗ is a fixed point of S. If (c) holds, then Sn+1x0 →
Sx∗ ( as n → ∞). By lower semi-continuity of p(Snx0, .), we have

p(Snx0, x
∗) ≤ lim inf

m→∞ p(Snx0,Smx0) = αn (say),

p(Snx0,Sx∗) ≤ lim inf
m→∞ p(Snx0,Sm+1x0) = βn (say).

By using (12), we have αn, βn → 0 as n → ∞. Now, in view of Lemma
1.11, we conclude that

Sx∗ = x∗.
Next, suppose that (c′) holds. Since {Snkx0} converges to x∗, (Snkx0, x

∗) ∈
X¹ and S is X¹-continuous, it follows that {Snk+1x0} converges to Sx∗.
As earlier, by lower semi-continuity of p(Snx0, .), we conclude that
Sx∗ = x∗.
If Sx = x, we have

h(1, φp(x, x)) ≤ h(α(x, x), φp(x, x)) = h(1, α(x, x), φp(Sx,Sx))
≤ f(β(x, x), ψφ(p(x, x)))

=⇒ φp(x, x) ≤ ψφ(p(x, x)) < φp(x, x).

This is a contradiction which amounts to say that φp(x, x) = 0, so that
p(x, x) = 0. This completes the proof.

In Theorem 2.15, if h(y, z) = yz, f(s, t) = st, we deduce the following
corollary:

Corollary 2.16. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
triangular α-admissible and α-regular mapping, where α : X ×X → R+.
Also, suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
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(b) there exist ψ ∈ Ψ, φ ∈ Φ, and β : X × X −→ [0, 1] such that

α(x, y)φ(p(Sx,Sy))) ≤ β(x, y)ψφ(p(x, y))),

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

In Theorem 2.15, if h(y, z) = (y + l)z, l > 1, f(s, t) = (1 + l)st, we
deduce the following corollary:

Corollary 2.17. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
triangular α-admissible and α-regular mapping, where α : X ×X → R+.
Also, suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ, and β : X × X −→ [0, 1] such that

(α(x, y) + l)φ(p(Sx,Sy)) ≤ (1 + l)β(x,y)ψφ(p(x,y))),

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

In Theorem 2.15, if h(y, z) = (z+l)y, l > 1, f(s, t) = st+l, we deduce
the following corollary:

Corollary 2.18. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
triangular α-admissible and α-regular mapping, where α : X ×X → R+.
Also, suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, φ ∈ Φ, and β : X × X −→ [0, 1] such that
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(φ(p(Sx,Sy)) + l)α(x,y) ≤ β(x, y)ψφ(p(x, y))) + l,

for all (x, y) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

3. On (γ, ψ, p)-Contractive Maps

In this section, we prove some results in partially ordered metric
space with (γ, ψ, p)-contractive Maps. In section 2, we considered the
condition of nondecreasing for function S, but in this section we prove
theorems by replacing the condition of nondecreasing to monotonocity
for function S.

Theorem 3.1. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, γ ∈ Γ, a pair (f, h) of upper class of type II

and β : X × X −→ [0, 1] such that,

h(α(x,Sx), α(Sx,S2x), γ(p(Sx,S2x))) ≤ f(β(x,Sx), ψγ(p(x,Sx)))
for all (x,Sx) ∈ X¹, where
(c) either S is orbitally continuous at x0 or
(c′) S is orbitally X¹-continuous and there exists a subsequence {Snkx0}

of {Snx0} converging to x∗ such that (Snkx0, x
∗) ∈ X¹ for any

k ∈ N.

Then FS 6= ∅. Moreover if for each x ∈ FS , α(x, x) ≥ 1, then
p(x, x) = 0.

Proof. If x0 = Sx0 for some x0 ∈ X , then there is nothing to prove.
Otherwise, let there be x0 ∈ X such that x0 6= Sx0, and (x0,Sx0) ∈ X¹.
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Owing to monotonocity of S, we can write (Sx0,S2x0) ∈ X¹. Continuing
this process inductively, we obtain

(Snx0,Sn+1x0) ∈ X¹,

for any n,m ∈ N. Now, we proceed to show that

(19) lim
n→∞ p(Snx0,Sn+1x0) = 0.

On using condition (b) and properties of γ and ψ, we get

h(1, 1, γ(p(Snx0,Sn+1x0)))

≤ h(α(x,Sx), α(Sx,S2x), γ(p(Snx0,Sn+1x0)))

≤ f(β(x,Sx), ψγ(p(Sn−1x0,Snx0))),

which implies that,

γ(p(Snx0,Sn+1x0)) ≤ ψγ(p(Sn−1x0,Snx0))

≤ ψ2γ(p(Sn−2x0,Sn−1x0))

≤ ...

≤ ψn−mγ(p(Smx0,Sm+1x0))

≤ ...

≤ ψnγ(p(x0,Sx0)).(20)

By using Lemma 1.9, we have lim
n→∞ γp(Snx0,Sn+1x0) = 0, so that by

Lemma 1.10, we have

lim
n→∞ p(Snx0,Sn+1x0) = 0,

which establishes (19).
Similarly, we can show

lim
n→∞ p(Sn+1x0,Snx0) = 0.(21)

Now, we proceed to show that {Snx0} is a Cauchy sequence. By triangle
inequality, continuity of γ and (19), we have

γp(Snx0,Sn+2x0) ≤ γ(p(Snx0,Sn+1x0) + p(Sn+1x0,Sn+2x0)) → 0,

as n → ∞ so that lim
n→∞ γp(Snx0,Sn+2x0) = 0 which amounts to say

that

lim
n→∞ p(Snx0,Sn+2x0) = 0.

By induction, for any k > 0, we have

lim
n→∞ p(Snx0,Sn+kx0) = 0.
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So, by Lemma 1.11, {Snx0} is a Cauchy sequence and due to complete-
ness of X , there exists x∗ ∈ X such that lim

n→∞Snx0 = x∗.

If (c) or (c′) holds, then proceeding on the lines of the proof of The-
orem 2.1, we can show that

Sx∗ = x∗.

If Sx = x, we have

h(1, 1, γp(x, x)) ≤ h(α(x, x), α(x, x), γp(x, x))

= h(α(x,Sx), α(Sx,S2x), γp(Sx,S2x))

≤ f(β(x,Sx), ψγ(p(x,Sx)))
=⇒ γp(x, x) ≤ ψγ(p(x,Sx)) < γp(x, x),

which is a contradiction so that γp(x, x) = 0, implying thereby p(x, x) =
0. This completes the proof.

Theorem 3.2. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping, where α : X × X → R+. Also,
suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b) there exist ψ ∈ Ψ, γ ∈ Γ, a pair (f, h) of upper class of type II

and β : X × X −→ [0, 1] such that,

h(α(x,Sx), α(Sx,S2x), γ(p(Sx,S2x))) ≤ f(β(x,Sx), ψγ(p(x,Sx)))
for all (x,Sx) ∈ X¹,
(c”) and for every y ∈ X with y 6= Sy,

inf{p(x, y) + p(x,Sx) : x ∈ X} > 0.

Then FS 6= ∅.Moreover if for each x ∈ FS , α(x, x) ≥ 1, then p(x, x) = 0.

Proof. Proceeding on the lines of the proof of Theorem 3.1, the se-
quence {Snx0} is a Cauchy sequence and so there exists a point x∗ in
X such that lim

n→∞Snx0 = x∗. Since lim
m,n→∞ d(Snx0,Smx0) = 0, there-

fore for each ε > 0 there exists Nε ∈ N such that n > Nε implies
p(SNεx0,Snx0) < ε. As lim

n→∞Snx0 = x∗ and p(x, .) is lower semi contin-

uous, therefore

p(SNεx0, x
∗) ≤ lim inf

n
p(SNεx0,Snx0) ≤ ε.
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Therefore p(SNεx0, x
∗) ≤ ε. Setting ε = 1

k , Nε = nk, we have

lim
k→∞

p(Snkx0, x
∗) = 0.

Now, assume that x∗ 6= Sx∗. Then by hypothesis (c”), we have

0 < inf{p(x, x∗) + p(x,Sx) : x ∈ X}
≤ inf{p(Snx0, x

∗) + p(Snx0,Sn+1x0) : n ∈ N} → 0,

as n → ∞. This is a contradiction so that x∗ = Sx∗.
If Sx = x, we have

h(1, 1, γp(x, x)) ≤ h(α(x, x), α(x, x), γp(x, x))

= h(α(x,Sx), α(Sx,S2x), γp(Sx,S2x))

≤ f(β(x,Sx), ψγ(p(x,Sx)))
=⇒ γp(x, x) ≤ ψγ(p(x,Sx)) < γp(x, x),

which is a contradiction so that γp(x, x) = 0, implying thereby p(x, x) =
0. This completes the proof.

Theorem 3.3. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping. Suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b1) there exist γ ∈ Γ, a pair (f, h) of upper class of type II and

β : X × X −→ [0, 1] and k ∈ [0, 12) such that,

h(α(x,Sx), α(Sx,S2x), γ(p(Sx,Sy)))
≤ f(β(x,Sx), k{γp(x,Sx) + γp(y,Sy)})

for all (x, y) ∈ X¹,
(c”) for every y ∈ X with y 6= Sy,

inf{p(x, y) + p(x,Sx) : x ∈ X} > 0.

Then FS 6= ∅.Moreover if for each x ∈ FS , α(x, x) ≥ 1, then p(x, x) = 0.

Proof. For x ∈ X , set y = Sx and α = k
1−k . Then we have (x,Sx) ∈

X¹ and α ∈ [0, 1). On using condition (b1), we get

γ(p(Sx,S2x)) ≤ k{γp(x,Sx) + γp(Sx,S2x)},
or

γ(p(Sx,S2x)) ≤ αγp(x,Sx).
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Therefore, by choosing ψ(t) = αt, all the conditions of Theorem 3.2 are
satisfied ensuring the conclusions of the theorem.

The set of all subadditive functions γ in Γ is denoted by Γ′.

Theorem 3.4. Let (X , d,¹) be a complete partially ordered metric
space equipped with a w-distance p. Let S : X → X be a nondecreasing,
α-admissible and α-regular mapping. Suppose that

(a) there exists x0 ∈ X such that (x0,Sx0) ∈ X¹ with α(x0,Sx0) ≥ 1,
(b2) there exist ψ ∈ Ψ, γ ∈ Γ′, a pair (f, h) of upper class of type II

and β : X × X −→ [0, 1] and k ∈ [0, 12) such that,

h(α(x,Sx), α(Sx,S2x), γ(p(Sx,S2x))) ≤ f(β(x,Sx), kγ(p(x,S2x)))

for all (x,Sx) ∈ X¹ and

inf{p(x, y) + p(x,Sx) : x ∈ X} > 0

for every y ∈ X with y 6= Sy. Then FS 6= ∅. Moreover if for each
x ∈ FS , α(x, x) ≥ 1, then p(x, x) = 0.

Proof. Set α = k
1−k , then α ∈ [0, 1). On using condition (b2) (as

γ ∈ Γ′), we have

γ(p(Sx,S2x)) ≤ kγ(p(x,S2x)) ≤ kγ(p(x,Sx) + p(Sx,S2x))

≤ kγp(x,Sx) + kγp(Sx,S2x).

Thus, γ(p(Sx,S2x)) ≤ αγ(p(x,Sx)).
Therefore, by choosing ψ(t) = αt, all the conditions of Theorem 3.2 are
satisfied ensuring the conclusions of the theorem.

References

[1] A. H. Ansari, Note on “α-admissible mappings and related fixed point theorems”,
The 2nd Regional Conference on Mathematics And Applications, PNU, Septem-
ber 2014, 373-376.

[2] A. Branciari, A fixed point theorem for mapping satisfying a general contractive
condition of integral type, International Journal of Mathematics and Mathemat-
ical Sciences, 10 (2002), 531-536.

[3] J. Caristi, Fixed point theorems for mapping satisfying inwardness conditions,
Trans. Amer. Math. Soc., 215 (1976), 241-251.

[4] S. Cho, J. Bae and E. Karapınar, Fixed point theorems for α-Geraghty contraction
type maps in metric spaces, Fixed Point Theory and Applications 2013, 2013:329.

[5] I. Ekeland, Nonconvex minimization problem, Bull. Amer. Math. Soc. 1 (1979),
443-474. MR 80h:49007.



580 Anupam Sharma and Arslan Hojat Ansari

[6] E. Karapınar, P. Kumam, P. Salimi, On α-ψ-Meir-Keeler contractive mappings,
Fixed Point Theory and Applications 2013, 2013:94.

[7] N. Hussain, P. Salimi, A. Latif, A Fixed point results for single and set-valued α-
η-ψ-contractive mappings, Fixed Point Theory and Applications 2013, 2013:212.

[8] T. L. Hicks and B. E. Rhoades, A Banach type fixed-point theorem, Mathematica
Japonica, 24 (3), 327-330, (1979)/80.

[9] L. Hossein, and L. Ing-Jer, The Existence of Fixed Points for Nonlinear Contrac-
tive Maps in Metric Spaces with w-Distances, Journal of Applied Mathematics
Volume , Article ID 161470, 11 pages (2012).

[10] N. Hussain, P. Salimi and A. Lat, Fixed point results for single and set-valued α-
η-ψ-contractive mappings, Fixed Point Theory and Applications, 2013, 2013:212.

[11] N. Hussain, M. Arshad, A. Shoaib and Fahimuddin, Common fixed point results
forα-ψ-contractions on a metric space endowedwith graph, Journal of inequalities
and applications, 2014, 2014:136.

[12] J. Jachymski, Remarks on contractive conditions of integral type, Nonlinear
Anal.(TMA) 71 (2009), 1073-1081.

[13] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and
fixed point theorems in complete metric spaces, Math. Japonica, 44 (1996), 381-
391. MR 97J:49011.

[14] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances
between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.

[15] S. Kumar, R. Chugh, R. Kumar, Fixed point theorem for compatible mapping sat-
isfying a contractive condition of integral type, Soochow J. Math. 33(2) (2007),
181-185.
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