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GENERALIZED TOPOLOGIES ON FINITE SETS

Mohammad Reza Ahmadi Zand

Abstract. The number of topologies on a finite set is a famous
open problem. In the present paper we discuss a method of obtain-
ing the number of generalized topologies on finite sets.

1. Introduction

The number T (n) of topologies on a finite set of cardinal n is an
open question [6]. There is no known simple formula to compute T (n)
for arbitrary n. The online Encyclopedia of Integer Sequences presently
lists T (n) for n ≤ 18. Recall that a subset µ of the power set expX of
a set X is a generalized topology (briefly GT) in X iff Gi ∈ µ (i ∈ I)
implies ∪i∈IGi ∈ µ (in particular, I can be empty so that the defnition
implies ∅ ∈ µ). The pair (X,µ) is called a generalized topological space
(briefly GTS). A member of µ is called open and a subset F of X is called
closed if X \F ∈ µ. Sets which are simultaneousely open and closed are
called open-closed sets. The theory of generalized topological spaces,
which was introduced by Á. Császár [5], is one of the most important
development of general topology in recent years. A GT on X is a join-
sublattice (expX,⊆) with the minimum element ∅, denoted by 0. Some
important counterexamples in topological spaces or GTS can be found
in the finite forms (see for example, [1, 3]).

Let X be an n-element set. Then the number GT (n) of generalized
topologies on X is exactly the number of join-sublattices of (exp X,⊆)
with 0. There is no known formula giving GT (n). Let gt(n, k) be the
set of all labeled generalized topologies on X having k open sets and
GT (n, k) = |gt(n, k)|. Thus GT (n) =

∑2n

k=1GT (n, k).

Definition 1.1. [7] Let µ be a GT on X and µ
′
a GT on X

′
.

A mapping f : X → X
′
is (µ, µ

′
)-continuous iff M

′ ∈ µ
′
implies
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f−1(M
′
) ∈ µ. If f is bijective and (µ, µ

′
)-continuous, moreover f−1

is (µ
′
, µ)-continuous, then we say that f is a (µ, µ

′
)-homeomorphism

and (X,µ) and (X
′
, µ

′
) are said to be equivalent.

Example 1.2. There is a unique GT on the empty set. Likewise
there are two distinct generalized topologies on {a}: gτ = {∅} and

gτ
′
= {∅, {a}}. Let X = {a, b} be a two-element set. There are 7

distinct generalized topologies on X but only 5 inequivalent generalized
topologies: g1 = {∅}, g2 = {∅, {a}}, g3 = {∅, X}, g4 = {∅, {a}, X} and
g5 = {∅, {a}, {b}, X}.

2. A GTS (X,µ), Where |µ| = 2|X| − 7

Recall that a GTS (X,µ) is said to be a µ-T1 space [9] if for any pair
of distinct points x and y of X, there exists a U ∈ µ such that x /∈ U
and y ∈ U . As [9] a GTS (X,µ) is called µ-T2 if for every distinct points
x, y ∈ X, there exist disjoint open sets Ux and Uy such that x ∈ Ux and
y ∈ Uy. It is well known that a finite Hausdorff topological space, i.e., a
finite µ-T2 topological space, is discrete, but in [2] there is a non-discrete
µ-T2 GTS which is finite. Here, we give another example.

Example 2.1. µ = {∅, {a}, {b}, {a, c}, {b, c}, {a, b, c}} is a µ-T2 GT
on X = {a, b, c}, that is not discrete.

Definition 2.2. If a GTS (X,µ) which is T1 has a base consisting of
open-and-closed sets, then it is called zero-dimensional. A GTS (X,µ)
which is T1 is called completely regular if for every x ∈ X and every
closed subset F ⊂ X such that x /∈ F there exists a continuous function
f from X to R such that f(x) = 0 and f(y) = 1 for y ∈ F . If the
cardinality of every nonempty member of µ is greater than one, then we
say that (X,µ) is crowded.

We give an example of a crowded completely regular GTS which is
finite.

Example 2.3. LetX = {a, b, c, d} and µ = expX\{{a}, {b}, {c}, {d}}.
Then (X,µ) is a zero-dimensional space since

β = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}
is a base for the GTS such that every member of β is closed. Therefore
the generalized topological space is completely regular.
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Remark 2.4. For n ≥ 2, the calculations of GT (n, k) are compli-
cated. In the following proposition we give some results about them.

Proposition 2.5. For n ≥ 3 we have the following.

(I) GT (n, 1) = GT (n, 2n) = 1;
(II) GT (n, 2) = 2n − 1;
(III) GT (n, 2n − 1) = n for n ≥ 2;

(IV) GT (n, 2n − 2) = 3n(n−1)
2 ;

(V) GT (n, 2n − 3) =
(
n
3

)
+
(
n
2

)
(2n− 3) +

(
n
1

)(
n−1
2

)
;

(VI) GT (n, 2n − 4) =
(
n
4

)
+
(
n
3

)
[3n− 6] +

(
n
2

)
(
(
2n−3

2

)
+ n2(n−1)(n−2)

6 ;

(VII) GT (n, 2n − 5) =
(
n
5

)
+

(
n
4

)
[4n − 10] +

(
n
3

)
(
(
3n−6

2

)
+

(
n
2

)
[
(
2n−3

3

)
+

2
(
n−1
2

)
] +

(
n
1

)
[3
(
n−1
3

)
+

(
n−1
4

)
];

(VIII) GT (n, 2n − 6) =
(
n
6

)
+ (5n − 15)

(
n
5

)
+

(
n
4

)(
4n−10

2

)
+

(
n
3

)
[
(
3n−6

3

)
+(

3n−6
2

)
]+

(
n
2

)
[1+

(
2n−3

4

)
)+3

(
n−1
3

)
]+n[

(
n−1
5

)
+
(
n−1
4

)(
4
2

)
+
(
n−1
3

)(
3
2

)
];

(IX) GT (n, 2n − 7) =
(
n
7

)
+ (6n − 21)

(
n
6

)
+

(
n
5

)(
5n−15

2

)
+

(
n
4

)
[
(
4n−10

3

)
+

4
(
n−1
2

)
] +

(
n
3

)
[
(
3n−6

4

)
+ 1 + 3

(
n−1
3

)(
3
2

)
] +

(
n
2

)
[
(
2n−3

5

)
+ 2

(
n−1
4

)(
4
2

)
+

3
(
n−1
3

)(
3
2

)
] + n[

(
n−1
6

)
+

(
n−1
5

)(
5
2

)
+
(
n−1
4

)(
4
2

)
+
(
n−1
3

)(
3
3

)
].

Proof. Let µ be a GT in X. (I) and (II). The proofs of (I) and (II)
are clear. (III). If |µ| = 2n − 1, then µ = expX \ {x} for some x ∈ X.
(IV). If |µ| = 2n − 2, then there exist two elements x, y of X such
that µ = expX \ {{x}, {y}} or µ = expX \ {{x}, {x, y}}. (V). Let
|µ| = 2n − 3. Then there exist three elements a, b, x ∈ X such that
µ = expX\{{a}, {b}, {x}}, µ = expX\{{a}, {b}, {a, x}}, or µ = expX\
{{a}, {a, x}{a, y}}. (VI). Let |µ| = 2n − 4. Then µ has one of the
following forms:

Case (1): Let µ = expX \A; where A = {{a}, {b}, {c}, {d}} ⊂ expX.
The set A = {{a}, {b}, {c}, {d}} is chosen in

(
n
4

)
ways.

Case (2): Let µ = expX \ {{a}, {b}, {c}, D}; where a, b, c ∈ X and
D ⊂ X. Then D is a two-element set and D ∩ {a, b, c} 6= ∅, D is chosen
in 3n−6 different ways and the subsets {a}, {b}, and {c} in

(
n
3

)
different

Ways.

Case (3): Let µ = expX \ {{a}, {b}, C,D}; where a, b ∈ X and
C,D ⊂ X. Then D and C intersect {a, b, c} and |C| = |D| = 2.

Case (4): Let µ = expX \{{a}, B, C,D}; where a ∈ X and B,C,D ⊂
X. Then a ∈ B∩C∩D and so |B| = |C| = |D| = 2 or |B| = |C| = 2 and
D = B ∪C. {a} is chosen in n different ways and B,C,D are chosen in
n(n−1)(n−2)

6 different ways. Similarly, (VII), (VIII) and (IX) hold.
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Example 2.6. Let X = {a, b, c}. Then by the above proposition
GT (3, 7) = 3, GT (3, 6) = 9, GT (3, 5) = 13, GT (3, 4) = 15, GT (3, 3) =
12 and GT (3, 2) = 7 GT (3, 1) = 1 = GT (3, 8). Thus, the total number
of generalized topologies on X is

GT (3) =
8∑

i=1

GT (3, i) = 61.

Example 2.7. Let X = {a, b, c, d}. Then by the above proposi-
tion GT (4, 15) = 4, GT (4, 14) = 18, GT (4, 13) = 46, GT (4, 12) =
51, GT (4, 11) = 174, GT (4, 10) = 221, GT (4, 9) = 196, GT (4, 2) = 15
and GT (4, 16) = 1 = GT (4, 1).

3. A GT with less than seven open sets

Recall that a chain topology on a finite set X, is a topology whose
open sets are totally ordered by inclusion. For generalized topological
spaces, we have the following definition.

Definition 3.1. A GT-chain on X, is a generalized topology whose
open sets are totally ordered by inclusion.

Proposition 3.2. [4, 8] Let C(n, k) be the number of chain topologies
on X having k open sets. Then,

C(n, k) =

n−1∑

i=1

(
n

i

)
C(i, k − 1) =

k−1∑

i=0

(−1)i
(
k − 1

i

)
(k − 1− i)n.

Corollary 3.3. Let CGT (n) be the totall number of GT-chains on
X, where |X| ≥ 3. Then,

CGT (n) = 1 +
n∑

i=1

i+1∑

k=2

k−1∑

j=0

(−1)j
(
n

i

)(
k − 1

j

)
(k − 1− j)i.

Proof. If µ is a GT-chain on X, then µ is a chain topology on A = ∪µ.
It is clear that any chain topology on a subset B of X is a GT-chain on
X. Thus, there is a bijective correspondence between GT-chains on X
and chain topologies on subsets of X. Therefore,

CGT (n) = 1 +
n∑

i=1

(
n

i

) i+1∑

k=2

C(i, k),

and so by the above proposition we are done.
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Corollary 3.4. Let CGT (n,m) be the totall number of GT-chains
on X with m open sets, where |X| = n and m ≤ n+ 1. Then,

CGT (n,m) =

(
m− 1

0

)
mn −

(
m− 1

1

)
(m− 1)n + · · ·+ (−1)m−1

(
m− 1

m− 1

)
1n.

Proof. Let µ be a GT-chain on X with m open sets. If X /∈ µ, then
µ ∪ {X} is a chain topology on X with m + 1 open sets. Otherwise, µ
is a chain topology on X with m open sets. Thus by Proposition 3.2,

CGT (n,m) = C(n,m+ 1) + C(n,m) =
m∑

i=0

(−1)i
(
m

i

)
(m− i)n

+

m−1∑

i=0

(−1)i
(
m− 1

i

)
(m− 1− i)n =

(
m

0

)
mn

− [

(
m

1

)
−

(
m− 1

0

)
](m− 1)n + · · ·+ (−1)m−1[

(
m

m− 1

)

−
(
m− 1

m− 2

)
]1n =

(
m− 1

0

)
mn −

(
m− 1

1

)
(m− 1)n

+ · · ·+ (−1)m−1

(
m− 1

m− 1

)
1n.

Example 3.5. Let X be a set and |X| = n where n ∈ N. Then
by the above corollary, the total number of GT-chains on X with three
open sets is CGT (n, 3) = 3n − 2n+1 + 1. Similarly CGT (n, 4) = 4n −
3n+1+3.2n− 1, CGT (n, 5) = 5n− 4n+1+6.3n− 4.2n+1, CGT (n, 6) =
6n − 5n+1 + 10.4n − 10.3n + 5.2n − 1, and CGT (n, 7) = 7n − 6n+1 +
15.5n − 20.4n + 15.3n − 6.2n + 1.

Proposition 3.6. For every 2 ≤ n ∈ N we have

(a) GT (n, 3) = 3n − 2n+1 + 1;

(b) GT (n, 4) = 4n − 3n+1 + 3.2n − 1 + 1
2

∑n
m=2

∑m−1
i=0

(
n
m

)(
m
i

)
(2i − 1).

Proof. . (a) For every µ ∈ gt(n, 3) there are a subset B of X and a
subset A of B such that ∅ 6= A ( B ⊂ X and µ = {∅, A,B}. Thus by
Example 3.5, GT (n, 3) = 3n − 2n+1 + 1.

(b) If µ = {∅, A,B,C} ∈ gt(n, 4), then either A ⊂ B ⊂ C or C =
A ∪B. The two cases are disjoint.

Case (1) : This is the number of GT-chains on X having 4 open sets; so
by Example 3.5, the total number of generalized topologies in this
case is 4n − 3n+1 + 3.2n − 1.



460 Mohammad Reza Ahmadi Zand

Case (2) : Let C be a subset of X such that

2 ≤ m = |C| ≤ n

and A be proper and non-empty subset of C. Then, 1 ≤ |A| = i <
m and so B = (C \ A) ∪ B1, where B1 ( A. Therefore, the total
number of generalized topologies in this case is

1

2

n∑

m=2

m−1∑

i=1

(
n

m

)(
m

i

)
(2i − 1).

Proposition 3.7. For every n = |X| ≥ 3 we have GT (n, 5) =

5n − 4n+1 + 6.3n − 4.2n + 1 +
1

2

n−1∑

m=2

m−1∑

i=1

(
n

m

)(
m

i

)
(2i − 1)(2n−m − 1)

+
5

3

n∑

m=3

m−1∑

i=2

i−1∑

j=1

(
n

m

)(
m

i

)(
i

j

)
(2j − 1).

Proof. Let µ ∈ gt(n, 5). If µ is a GT-chain, then by Example 3.5, the
total number of GT-chains on X is 5n − 4n+1 + 6.3n − 4.2n + 1. If µ is
not a GT-chain, then there are A,B ∈ µ such that A * B and B * A,
and so C = A ∪ B ∈ µ. Thus, the non-empty members of µ has one of
the following forms:

(1) A ∪B = C ( D.
(2) ∅ 6= D ( C = A ∪B.

The two cases are disjoint.
Case (1) : D can be chosen in 2n−m − 1 ways, where

2 ≤ m = |C| ≤ n− 1.

Thus by the proof of the above proposition, the total number of
generalized topologies in this case is

1

2

n−1∑

m=2

m−1∑

i=1

(
n

m

)(
m

i

)
(2i − 1)(2n−m − 1).

Case (2) : Since in this case 3 ≤ m = |C| ≤ n, we have 2 ≤ i = |A| ≤ m−1.
In this case, D ∩ (A ∩B) 6= ∅ and so

1 ≤ |A ∩B| = j ≤ i− 1.

Thus the total number of generalized topologies in this case is
n1 + n2 + n3, where n1, n2 and n3 can be computed as follows:
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(2I) If D is a nonempty subset of A ∩ B. Then, by the proof of the
above proposition

n1 =
1

2

n∑

m=3

m−1∑

i=2

i−1∑

j=1

(
n

m

)(
m

i

)(
i

j

)
(2j − 1).

(2II) If D = (A \ B) ∪ (B \ A) ∪ D1, where D1 is a proper subset of
A ∩B. Then, n2 =

1
3n1.

(2II) If D = (A \B) ∪D1, where D1 is a proper subset of A ∩B. Then
n3 = 2n1. The proof is complete.

Notation 3.8. Let Y be a subset of A ∪B. Then Y can be written
as Y = Y ′ ∪ Y1 ∪ Y ′′, where Y ′ ⊂ A \B, Y1 ⊂ A ∩B and Y ′′ ⊂ B \A.

Theorem 3.9. Let µ = {∅, A,B,A ∪ B,D,E} be in gt(n, 6), such
that A * B and B * A and D,E ( A ∪ B. If two of the sets D′, D′′
and D1 are empty and one of them is non-empty, then µ has one of the
following forms:

(1) µ = {∅, A,B,A∪B,D1, ((A∩B)\I)∪E2}, where I is a non-empty
subset of D1 and E2 = A \B or E2 = (A \B) ∪ (B \A).

(2) µ = {∅, A,B,A ∪ B,D1, E}, where ∅ 6= D1 ⊂ E1 = E ⊂ A ∩ B,
E = E1 ∪ (B \A)∪ (A \B) or E = E1 ∪ (B \A), where ∅ 6= D1 ⊂
E1 ( A ∩B.

(3) µ = {∅, A,B,A ∪B,D1, A ∪ E′′}, where ∅ ( E′′ ( B \A.
(4) µ = {∅, A,B,A ∪B,D′, D′ ∪B}, where ∅ 6= D′ ( A \B.
(5) µ = {∅, A,B,A ∪B,A \B,B ∪ E′}, where ∅ 6= E′ ( A \B.
(6) µ = {∅, A,B,A∪B,A \B,E1 ∪E2}, where E2 = (A \B)∪ (B \A)

or E2 = A \B.

Proof. Let C = A∪B. If D = D1, then D∪E = E′ ∪ (D1 ∪E1)∪E′′
and so |µ| = 6 implies that there are the following cases which are
disjoint:

(1) If D ∪ E = A, then E′′ = ∅, and so A = E′ ∪ (D1 ∪ E1) , i.e.,
D1 ∪ E1 = A ∩B and E′ = A \B. Thus E1 = (A ∩B) \ I, where
I is a non-empty subsets of D1. We note that if D ∪E = B, then
the set of generalized topologies in this case is coincided with the
set of generalized topologies in the case D ∪ E = A.

(2) If D ∪ E = C, then (D1 ∪ E1) ∪ E′ ∪ E′′ = C. Thus, A \ B =
E′, B\A = E′′ and D1∪E1 = A∩B, i.e., E = (A\B)∪(B\A)∪E1

and E1 = (A ∩B) \ I, where I is a non-empty subset of D1.
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(3) If E = D∪E, then E = (D1∪E1)∪E′∪E′′, and so D1 ⊂ E1. We
note that E ∪ A = E′′ ∪ A ∈ µ can not be equal to B or D = D1

so there are the following cases which are disjoint.
(3I) If E ∪ A = E′′ ∪ A = A, then E′′ = ∅ and E ⊂ A. But

B ∪E = B ∪E′ ∈ µ implies that E′ = ∅ or E′ = A \B. Thus
D = D1 ( E = E1 ⊂ A ∩ B or E = E1 ∪ (A \ B), where
D1 ⊂ E1 ( A ∩B.

(3II) If E∪A = E′′∪A = C, then E′′ = B\A and B∪E′ = B∪E ∈ µ
implies that E′ = ∅ or E′ = A \ B. Thus E = E1, E =
E1 ∪ (A \ B) ∪ (B \ A) or E = E1 ∪ (B \ A). We note that
if E = E1 ∪ (B \ A), then the set of generalized topologies in
this case is coincided with the set of generalized topologies in
the case E = E1 ∪ (A \B).

(3III) If E ∪A = E′′ ∪A = E, then A ⊂ E. Thus E′ = A \B, E1 =
A ∩B and E′′ is a non-empty and proper subset of B \A.

Let D1 = D′′ = ∅ and ∅ 6= D′. Then D ∪A = A and D′ ∪B = D ∪B is
equal to E or C. Thus there are the following cases which are disjoint.

(4) If D′∪B = E, then D′ is a non-empty and proper subset of A\B.
(5) If D′ ∪ B = C, then D′ = D = A \ B. Since E ∪D = E1 ∪ (A \

B) ∪ E′′ ∈ µ, we have the following cases which are disjoint:
(5I) If E1 ∪ (A \B)∪E′′ = E ∪D = A. Then E′′ = ∅ and E1 = A∩B

and so E = E′∪(A∩B). Thus E∪B = E′∪B implies that E′ = ∅
and so E = A ∩B; which is not a new GT.

(5II) If E1 ∪ (A \B)∪E′′ = E ∪D = C, then E = B ∪E′. Since E 6=B
and E 6= C, we have ∅ 6= E′ ( A \B.

If E1 ∪ (A \ B) ∪ E′′ = E ∪ D = E, then E′ = A \ B = D and so
E = (A \B)∪E1 ∪E′′. Since A∪E = A∪E′′ there are two cases which
are disjoint:

(5III) If A∪E′′ = C, then E′′ = B \A and so E = (A\B)∪E1∪ (B \A).
(5IV) If A ∪ E′′ = A, then E′′ = ∅ and so E = (A \B) ∪ E1.

We note that if D1 = ∅ = D′ and D′′ 6= ∅, then the set of gener alized
topologies in this case is coincided with the set of generalized topologies
in the case D1 = ∅ = D′′ and D′ 6= ∅.

Theorem 3.10. Let µ = {∅, A,B,A ∪ B,D,E} be in gt(n, 6), such
that A * B and B * A and B * A and D,E ( A ∪ B. If one of the
sets D′, D′′ and D1 is empty and two of them are non-empty, then µ
has one of the following forms:
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(1) µ = {∅, A,B,A∪B,D1 ∪D′, D′ ∪B}, where D1 is non-empty and
∅ 6= D′ ( A \B.

(2) µ = {∅, A,B,A ∪B, (A \B) ∪D1, (A \B) ∪ ((A ∩B) \ I)}, where
I is a non-empty subset of A∩B or µ = {∅, A,B,A∪B, (A \B)∪
D1, (A ∩B) \ I}, where I ⊂ A ∩B.

(3) µ = {∅, A,B,A ∪B, (A \B) ∪D1, E2 ∪E1}, where E2 = A \B or
E2 = (A \B) ∪ (B \A) and D1 ( E1 ( A ∩B.

(4) µ = {∅, A,B,A∪B, (A \B)∪D1, E2 ∪ ((A∩B) \ I)}, where E2 is
B \A or (B \A) ∪ (A \B) and I is a non-empty subset of D1.

(5) µ = {∅, A,B,A∪B, (A\B)∪D′′, A∪D′′}, where ∅ 6= D′′ ( B \A.
Proof. Let C = A ∪ B. If D1 and D′ are non-empty and D′′ = ∅.

Then D = D1 ∪D′, D ∪A = A and D ∪B = D′ ∪B is equal to E or C.
Thus we have the following cases which are disjoint:

(1) If D′ ∪B = D ∪B = E. Then ∅ 6= D′ is a proper subset of A \B
since E 6= C. Thus the general form of µ in this case is

µ = {∅, A,B,A ∪B,D1 ∪D′, D′ ∪B}.
(2) If D ∪ B = C, then D′ = A \ B and so D = (A \ B) ∪D1. Thus

∅ 6= D1 is a proper subset of A ∩ B. Since D ∪ E = (D1 ∪ E1) ∪
(A \B) ∪ E′′ ∈ µ, we have the following cases which are disjoint:

(2I) If D ∪ E = A, then(D1 ∪ E1) ∪ (A \ B) ∪ E′′ = A and so E′′ =
∅, D1 ∪E1 = A∩B and E = E1 ∪E′. If E′ ( A \B, then E′ = ∅.
Thus µ has the following form:

µ = {∅, A,B,A ∪B, (A \B) ∪D1, (A ∩B) \ I)},
where I is a subset of D1. If E′ = A \ B, then E1 = (A ∩ B) \ I,
where I is a non-empty subset of D1. Thus µ has the following
form:

µ = {∅, A,B,A ∪B, (A \B) ∪D1, (A \B) ∪ ((A ∩B) \ I)}.
(3) If D1∪(A\B)∪E = D∪E = E, then E′ = A\B. A∪E = A∪E′′

implies that E′′ is equal to ∅ or B \ A and so E = (A \ B) ∪ E1

or E = (A \B)∪ (B \A)∪E1. Thus the general form of µ in this
case is

µ = {∅, A,B,A ∪B, (A \B) ∪D1, E1 ∪ E2},
where E2 = (A\B) or E2 = (A\B)∪(B\A) andD1 ( E1 ( A∩B.

(4) If D1 ∪ (A \ B) ∪ E = D ∪ E = C, then D1 ∪ E1 = A ∩ B and
E′′ = B\A. Thus E∪B = E′∪B implies that E′ = ∅ or E′ = A\B
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and E1 = (A∩B) \ I, where I is a non-empty subset of D1 and so
the general form of µ in this case is

µ = {∅, A,B,A ∪B, (A \B) ∪D1, E2 ∪ ((A ∩B) \ I)},
where E2 is B \A or (B \A)∪(A\B), and I is a non-empty subset
of D1. We note that if D1 and D′′ are nonempty and D′ = ∅. Then
the set of generalized topologies in this case is coincided with the
set of generalized topologies in the case D1 6= ∅ 6= D′ and D′′ = ∅.
Let D′ and D′′ be non-empty and D1 = ∅. Then D = D′∪D′′ and
so B ∪D = B ∪D′ ∈ µ and A∪D = A∪D′′ ∈ µ. Since A∪D′′ is
equal to E or C, the following cases are disjoint:

(5) If A ∪ D′′ = E, then B ∪ D′ = C and so D′ = A \ B. Thus the
general form of µ in this case is

µ = {∅, A,B,A ∪B, (A \B) ∪D′′, A ∪D′′},
where ∅ 6= D′′ ( B \ A. We note that if A ∪ D′′ = C, then
D′′ = B \A. Thus D = D′ ∪ (B \A) and D ∪B = D′ ∪B, and so
the set of generalized topologies in this case is coincided with the
set of generalized topologies in the caseA ∪D′′ = E.

Theorem 3.11. Let µ = {∅, A,B,A ∪ B,D,E} be in gt(n, 6), such
that A * B and B * A, and each of the sets D1, D

′ and D′′ are non-
empty. Then µ = {∅, A,B,A ∪ B, (A \ B) ∪ D1 ∪ D′′, A ∪ D′′}, where
∅ 6= D1 ( A ∩B; and ∅ 6= D′′ ( B \A.

Proof. Let D1, D
′ and D′′ be non-empty, then A ∪D = A ∪D′′ ∈ µ

implies that A ∪ D is equal to C or E. If A ∪ D = E, then from
B ∪D = B ∪D′ we conclude that D′ = A \ B. Thus the general form
of µ in this case is

µ = {∅, A,B,A ∪B, (A \B) ∪D1 ∪D′′, A ∪D′′},
where ∅ 6= D1 ( A ∩B; and ∅ 6= D′′ ( B \A.
We note that if A ∪ D = E, then the set of all generalized topologies
obtained in this case is equal to the set of all generalized topologies
obtained in the case A ∪D = E.
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