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GENERALIZED TOPOLOGIES ON FINITE SETS

MoOHAMMAD REZA AHMADI ZAND

Abstract. The number of topologies on a finite set is a famous
open problem. In the present paper we discuss a method of obtain-
ing the number of generalized topologies on finite sets.

1. Introduction

The number T'(n) of topologies on a finite set of cardinal n is an
open question [6]. There is no known simple formula to compute 7'(n)
for arbitrary n. The online Encyclopedia of Integer Sequences presently
lists T'(n) for n < 18. Recall that a subset p of the power set expX of
a set X is a generalized topology (briefly GT) in X iff G; € p (i € I)
implies U;erG; € p (in particular, I can be empty so that the defnition
implies ) € p). The pair (X, p) is called a generalized topological space
(briefly GTS). A member of y is called open and a subset F' of X is called
closed if X \ F' € p. Sets which are simultaneousely open and closed are
called open-closed sets. The theory of generalized topological spaces,
which was introduced by A. Csészér [5], is one of the most important
development of general topology in recent years. A GT on X is a join-
sublattice (expX, C) with the minimum element (), denoted by 0. Some
important counterexamples in topological spaces or GTS can be found
in the finite forms (see for example, [1, 3]).

Let X be an n-element set. Then the number GT'(n) of generalized
topologies on X is exactly the number of join-sublattices of (exp X, Q)
with 0. There is no known formula giving GT'(n). Let gt(n, k) be the
set of all labeled generalized topologies on X having k open sets and
GT(n, k) = |gt(n, k)|. Thus GT(n) = S22, GT(n, k).

Definition 1.1. [7] Let u be a GT on X and i’ a GT on X .
A mapping f : X — X is (1, //)—continuous iff M' e p' implies
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fYM') € p. If f is bijective and (u, i’ )-continuous, moreover f~!
is (y1', ju)-continuous, then we say that f is a (u,p )-homeomorphism
and (X, p) and (X/,u/) are said to be equivalent.

Example 1.2. There is a unique GT on the empty set. Likewise
there are two distinct generalized topologies on {a}: gr = {0} and
gr = {0,{a}}. Let X = {a,b} be a two-element set. There are 7
distinct generalized topologies on X but only 5 inequivalent generalized
topologies: g1 = {0}, g2 = {0, {a}}, g3 = {0, X}, g2 = {0,{a}, X} and
95 = {0.{a}, {b}, X}.

2. A GTS (X, u), Where |u| > 2XI -7

Recall that a GTS (X, ) is said to be a u-T space [9] if for any pair
of distinct points x and y of X, there exists a U € p such that x ¢ U
and y € U. As [9] a GTS (X, p) is called u-T5 if for every distinct points
z,y € X, there exist disjoint open sets U, and U, such that x € U, and
y € Uy. It is well known that a finite Hausdorff topological space, i.e., a
finite u-T» topological space, is discrete, but in [2] there is a non-discrete
u-To GTS which is finite. Here, we give another example.

Example 2.1. p = {0,{a}, {b},{a,c}, {b,c},{a,b,c}} is a u-To GT
on X = {a,b,c}, that is not discrete.

Definition 2.2. If a GTS (X, u) which is T} has a base consisting of
open-and-closed sets, then it is called zero-dimensional. A GTS (X, p)
which is T is called completely regular if for every x € X and every
closed subset F' C X such that x ¢ F' there exists a continuous function
f from X to R such that f(x) = 0 and f(y) = 1 for y € F. If the
cardinality of every nonempty member of y is greater than one, then we
say that (X, u) is crowded.

We give an example of a crowded completely regular GTS which is
finite.

Example 2.3. Let X = {a,b,c,d} and p = expX\{{a}, {b}, {c}, {d}}.
Then (X, p) is a zero-dimensional space since

B = {{a7 b}7 {a’ C}v {av d}7 {bv C}7 {b7 d}7 {C, d}}

is a base for the GTS such that every member of 3 is closed. Therefore
the generalized topological space is completely regular.
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Remark 2.4. For n > 2, the calculations of GT'(n,k) are compli-
cated. In the following proposition we give some results about them.

Proposition 2.5. For n > 3 we have the following.

(I) GT(n,1) = GT(n,2") = 1;
(I) GT(n,2) =2" —1;
(ITIT) GT(n,2™ —1) =n forn > 2
(IV) GT(n,2" — 2) = 3nn=b).
(V) GTn2 =) = () + (Yn =3+ ()05
(VI) GT(n,2" —4) = (1) + (3)[Bn— 6] + () ((*%°) + M;
(VI) GT'(n, 2" —

) = (5) + (D4n =100+ (") + RI57) +

B("3Y) + (")

= () + Gn = 15)(5) + () (*";") + (5)

D 430 Dl 2

T(n,2" —7) = (1) + (6n —21)(§)

S+ QI +1+ 30501+ I +
SUSHEI ) + (596 + O + (IO

Proof. Let pn be a GT in X. (I) and (II). The proofs of (I) and (II)
are clear. (III). If |u| = 2™ — 1, then u = expX \ {z} for some z € X.
(IV). If |u| = 2™ — 2, then there exist two elements z,y of X such
that 4 = expX \ {{z},{y}} or p = expX \ {{z},{z,y}}. (V). Let
|| = 2™ — 3. Then there exist three elements a,b,z € X such that
p=expX\{{a},{b}, {z}}, p=expX\{{a},{b}, {a,2}}, or p = expX\
{{a},{a,z}{a,y}}. (VI). Let |u| = 2™ — 4. Then u has one of the
following forms:

Case (1): Let p = expX \ A; where A = {{a}, {b},{c},{d}} C expX.
The set A = {{a}, {b}, {c},{d}} is chosen in ()}) ways.

Case (2): Let p = expX \ {{a}, {b},{c}, D}; where a,b,c € X and
D c X. Then D is a two-element set and D N {a,b,c} # 0, D is chosen
in 3n— 6 different ways and the subsets {a}, {b}, and {c} in (}) different
Ways.

Case (3): Let p = expX \ {{a},{b},C,D}; where a,b € X and
C,D C X. Then D and C intersect {a,b,c} and |C| = |D| = 2.

Case (4): Let p = expX \{{a}, B,C,D}; where a € X and B,C,D C
X. Thena € BNCND andso |B| =|C|=|D|=2or|B|=|C|=2and
D = BUC. {a} is chosen in n different ways and B, C, D are chosen in
nn=D0=2) Gifferent ways. Similarly, (VII), (VIII) and (IX) hold. [

Q/\

(IX)
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Example 2.6. Let X = {a,b,c}. Then by the above proposition
GT(3,7) =3, GT'(3,6) =9, GT(3,5) =13, GT'(3,4) =15, GT(3,3) =
12 and GT'(3,2) =7 GT'(3,1) = 1 = GT(3,8). Thus, the total number
of generalized topologies on X is

8
=> GT(3,i) =
i=1

Example 2.7. Let X = {a,b,c,d}. Then by the above proposi-
tion GT(4,15) = 4, GT(4,14) = 18, GT(4,13) = 46, GT(4,12) =
51, GT(4,11) = 174, GT(4,10) = 221, GT(4,9) = 196, GT(4,2) = 15
and GT(4,16) = 1 = GT(4, 1).

3. A GT with less than seven open sets

Recall that a chain topology on a finite set X, is a topology whose
open sets are totally ordered by inclusion. For generalized topological
spaces, we have the following definition.

Definition 3.1. A GT-chain on X, is a generalized topology whose
open sets are totally ordered by inclusion.

Proposition 3.2. [4, 8] Let C(n, k) be the number of chain topologies
on X having k open sets. Then,

C’(n,k)—nil(?) Clik—1) kzl ( )(k—l—z’)”.

=1 =

Corollary 3.3. Let CGT(n) be the totall number of GT-chains on
X, where |X| > 3. Then,

CGT(n _1+Zn:§k21 <)< ;1>(k—1—j)i.

i=1 k=2 5=0

Proof. If i is a GT-chain on X, then p is a chain topology on A = Up.
It is clear that any chain topology on a subset B of X is a GT-chain on
X. Thus, there is a bijective correspondence between GT-chains on X
and chain topologies on subsets of X. Therefore,

i+1

CGT(n —1+Z< >Zczk

and so by the above proposition we are done. ]
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Corollary 3.4. Let CGT(n,m) be the totall number of GT-chains
on X with m open sets, where | X| =n and m < n + 1. Then,

m—1 m—1 m—1
T — n __ — 1" -1 m—1 1",
CGT(n,m) ( 0 >m ( ) )(m A+ (1) (ml)
Proof. Let u be a GT-chain on X with m open sets. If X ¢ p, then
uwU{X} is a chain topology on X with m + 1 open sets. Otherwise, u
is a chain topology on X with m open sets. Thus by Proposition 3.2,

CGT(n,m) = C(nym+1)+C(n,m) =Y (~1) <T> (m — )"
i=0

m

+ 7;1( )’(m;l)(m—l—z’)“:(?)mn
(" v ()

=1
-
L A L

o (—1)m1(m 1) 1",

m—1

Example 3.5. Let X be a set and |X| = n where n € N. Then
by the above corollary, the total number of GT-chains on X with three
open sets is CGT(n,3) = 3" — 2"*! 4 1. Similarly CGT(n,4) = 4™ —
3t 432" — 1, CGT(n,5) = 5" — 4" 4+6.3" —4.2" +1, CGT(n,6) =
6" — 5"t +10.4" — 10.3" + 5.2" — 1, and CGT(n,7) = T — 6"+ +
15.5™ —20.4" +15.3" — 6.2" + 1.

Proposition 3.6. For every 2 <n € N we have
(a) GT(n,3) = 3" — 2"l 4 1;
(b) GT(n,4) = 4" — 3"+ 4320 — 14 L3570 S (™) () (20 - 1).

Proof. . (a) For every u € gt(n,3) there are a subset B of X and a
subset A of B such that ) # A C B C X and pu = {0, A, B}. Thus by
Example 3.5, GT(n,3) = 3" — 2"+ 41,

(b) If u = {0, A, B,C} € gt(n,4), then either A C B C C or C =
AU B. The two cases are disjoint.

Case (1) : This is the number of GT-chains on X having 4 open sets; so
by Example 3.5, the total number of generalized topologies in this
case is 4" — 3"+l 327 — 1.
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Case (2) : Let C be a subset of X such that
2<m=1C|<n
and A be proper and non-empty subset of C. Then, 1 < |[A] =i <

m and so B = (C'\ A) U By, where By C A. Therefore, the total
number of generalized topologies in this case is

22 () (e

m=2 =1

Proposition 3.7. For every n = |X| > 3 we have GT'(n,5) =

n—1m-—1
1 .
54T 463" 42" 12 (”) <m> (2 - 1)@ - 1)
1

> () ()e -

Proof. Let p € gt(n,5). If u is a GT-chain, then by Example 3.5, the
total number of GT-chains on X is 5" — 4"t! +6.3" — 4.2" + 1. If pu is
not a GT-chain, then there are A, B € p such that A ¢ B and B € A,
and so C' = AU B € p. Thus, the non-empty members of p has one of
the following forms:

(1) AuB=CC D.
(2)0#£#DCC=AUB.
The two cases are disjoint.
Case (1) : D can be chosen in 2"~ — 1 ways, where

2<m=|C|<n-—-1

Thus by the proof of the above proposition, the total number of
generalized topologies in this case is

% S ' <:2> <T> (27— 1)(2"™ — 1).

Case (2) : Since in this case 3 < m = |C| < n, we have 2 <i = |A| < m—1.
In this case, DN (AN B) # 0 and so

1<|ANB|=j<i-1.

\
M 3

Thus the total number of generalized topologies in this case is
n1 + ng + n3, where nq,ny and nz can be computed as follows:
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(2I) If D is a nonempty subset of AN B. Then, by the proof of the
above proposition

1 n m-—11i-1 n m i ]
R R0
m=3 i=2 j=1
(2I) If D = (A\ B)U (B \ A) U Dy, where D; is a proper subset of
AN B. Then, ng = %nl.
(2II) If D = (A \ B) U Dy, where D is a proper subset of AN B. Then
ns = 2n1. The proof is complete.

O]

Notation 3.8. Let Y be a subset of AU B. Then Y can be written
asY =Y' UYL, UY"” whereY' C A\B,Y1 CANnBandY" C B\ A.

Theorem 3.9. Let p = {0, A, B,AU B, D, E} be in gt(n,6), such
that A¢ B and B¢ A and D,E C AU B. If two of the sets D', D"
and D, are empty and one of them is non-empty, then p has one of the
following forms:

(1) u={0,A,B,AUB, D1, ((ANB)\I)UEy}, where I is a non-empty
subset of Dy and B3 = A\ B or E3 = (A\ B)U(B\ A).

(2) p=4{0,A,B,AU B,Dy,E}, where ) # D1 C E; = E C AN B,
E=E U(B\A)U(A\B) or E = B, U(B\ A), where ) # D, C

Ey C ANB
(3) pn={0,A,B,AUB,D1,AUE"}, where ) C E" C B\ A.
(4) pn={0,A,B,AuUB,D’,D'"UB}, where ) # D' C A\ B.
(5) pn={0,A,B,AUB,A\ B,BUE'}, where ) # E' C A\ B.
(6) pn={0,A,B,AUB, A\ B, E1UEy}, where E5 = (A\ B)U(B\ A)
or L9 :A\B
Proof. Let C = AUB. If D = Dy, then DUE = E'U(D,UE;)UE"
and so |u| = 6 implies that there are the following cases which are
disjoint:

(1) f DUE = A, then E” = (), and so A = EF' U (D U Fy) , ie.,
DiUE, =ANnBand E' = A\ B. Thus E; = (AN B) \ I, where
I is a non-empty subsets of Di. We note that if D U F = B, then
the set of generalized topologies in this case is coincided with the
set of generalized topologies in the case D U FE = A.

(2) f DUE = C, then (D;UE;)UFE UE" = C. Thus, A\ B =
E',B\A=FE"and DiUE, = ANB,ie., E=(A\B)U(B\A)UE;
and F1 = (AN B) \ I, where I is a non-empty subset of Dj.



462 Mohammad Reza Ahmadi Zand

(3) f E=DUE, then E = (D,UE;)UE'UE", and so D; C E;. We
note that FU A = E” U A € u can not be equal to B or D = Dy
so there are the following cases which are disjoint.

B)If FUA =FE"UA = A, then E” = () and E C A. But
BUE = BUE' € pimplies that E' = () or E' = A\ B. Thus
D=D CE=FE CANBor E = FE; U(A\ B), where
DiC B, C ANB.

(3II) If EUA = E"UA = C, then E” = B\A and BUE' = BUE € p
implies that £/ = () or ' = A\ B. Thus F = FE,F =
EiU(A\B)U(B\ A)or E=FE U(B\A). We note that
if E = FE;U(B)\ A), then the set of generalized topologies in
this case is coincided with the set of generalized topologies in
the case E = E1 U (A\ B).

(3II) f EUA=E"UA=E, then AC E. Thus E' = A\ B, E; =
AN B and E” is a non-empty and proper subset of B\ A.

Let D1 =D"=0and ) # D’. Then DUA=Aand D’UB=DUB is
equal to E or C. Thus there are the following cases which are disjoint.

(4) If D'UB = E, then D’ is a non-empty and proper subset of A\ B.
5) f D’UB=C,then D'=D = A\ B. Since EUD = E; U (A\
B)U E" € p, we have the following cases which are disjoint:

(51) If By U(A\B)UE" = EUD = A. Then E" = § and E; = AN B
and so F = E'"U(ANB). Thus EUB = E'UB implies that £’ = )
and so £ = AN B; which is not a new GT.

(5I1) If By U(A\B)UE" = EUD = C, then E = BUE'. Since E #B
and E # C, we have ) # F' C A\ B.

If B U(A\B)UE" = EUD = E, then E'f = A\ B = D and so
E=(A\B)UE,UE". Since AUE = AU E" there are two cases which
are disjoint:
(5IIT) It AUE" = C, then E” = B\ A and so E = (A\ B)UE; U(B\ A).
(5IV) If AUE” = A, then E” = () and so E = (A\ B) U Ej.
We note that if Dy = () = D’ and D” # (), then the set of gener alized
topologies in this case is coincided with the set of generalized topologies
in the case D1 = ) = D" and D' # ().

]

Theorem 3.10. Let p = {0, A, B,AU B, D, E} be in gt(n,6), such
that A¢ Band B¢ A and B¢ A and D,E C AU B. If one of the
sets D', D" and D is empty and two of them are non-empty, then p
has one of the following forms:
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(1) p={0,A,B,AUB,D,UD’', D"U B}, where D; is non-empty and
0+£D C A\B.

(2) u={0,A,B,AUB,(A\ B)UD1,(A\ B)U((ANB)\I)}, where
I is a non-empty subset of ANB or p={0,A, B,AUB,(A\ B)U
Dy, (AnB)\ I}, whereI C AN B.

(3) pn={0,A,B,AUB,(A\ B)U Dy, E5 U Ey}, where E5 = A\ B or
By = (A\B)U(B\ A) and D1 C E; C AN B.

(4) u={0,A,B,AUB,(A\B)UD;, E2U((ANB)\I)}, where E3 is
B\ Aor (B\A)U(A\ B) and [ is a non-empty subset of D;.

(5) pn={0,A,B,AUB,(A\B)UD", AUD"}, where ) # D" C B\ A.

Proof. Let C = AU B. If D; and D' are non-empty and D" = (.
Then D =D UD',DUA=Aand DUB = D'UB is equal to E or C.
Thus we have the following cases which are disjoint:

(1) I D'UB =DUB = E. Then () # D' is a proper subset of A\ B
since E # C. Thus the general form of x in this case is

pw=1{0,A,B,AUuB,D;uD' D'UB}.

(2) f DUB =C, then D' = A\ B and so D = (A\ B)U D;. Thus
() # Dy is a proper subset of AN B. Since DUFE = (DU E;)U
(A\ B)U E" € p, we have the following cases which are disjoint:

(2I) f DUE = A, then(D; UE)U(A\B)UE" = A and so E" =
0, DjUE; =ANBand E=FE,UE'. If E' C A\ B, then E' = ().
Thus p has the following form:

p=1{0,A,B,AUB,(A\ B)UDy, (AN B)\I)},

where I is a subset of Dy. If E' = A\ B, then By = (AN B)\ I,
where [ is a non-empty subset of D;. Thus p has the following
form:

p=1{0,A,B,AUB,(A\ B)UDs,(A\ B)U((ANB)\I)}.

(3) f DiU(A\B)UE = DUE = E, then E' = A\B. AUE = AUE"
implies that E” is equal to ) or B\ A and so E = (A\ B) U F;
or E=(A\B)U(B\ A)U E;. Thus the general form of x in this
case is

/L:{@,A,B,AUB,(A\B)UDl,ElLJEQ},

where Fy = (A\B) or B3 = (A\B)U(B\A) and D; C E1 C ANB.
(4) If DU(A\B)UE =DUE = C, then Dy UE; = AN B and
E" = B\ A. Thus EUB = E'UB implies that E' = () or E' = A\ B
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and By = (AN B)\ I, where I is a non-empty subset of D; and so
the general form of p in this case is

p={0,A,B,AUB,(A\ B)U Dy, E;U((ANB)\ 1)},

where Ey is B\ A or (B\ A)U(A\ B), and I is a non-empty subset
of Dy. We note that if Dy and D" are nonempty and D’ = (). Then
the set of generalized topologies in this case is coincided with the
set of generalized topologies in the case Dy # () # D' and D" = 0.
Let D’ and D” be non-empty and D1 = (). Then D = D'UD"” and
so BUD=BUD € pand AUD =AUD" € . Since AUD" is
equal to E or C, the following cases are disjoint:

(5) f AUD"” = E, then BUD' = C and so D’ = A\ B. Thus the
general form of y in this case is

pw=1{0,A,B,AUB,(A\ B)uD" AuD"},

where ) # D" C B\ A. We note that if AU D” = C, then
D" =B\ A. Thus D=D'U(B\ A) and DUB = D'"U B, and so
the set of generalized topologies in this case is coincided with the
set of generalized topologies in the caseAU D" = E.

O]

Theorem 3.11. Let p = {0, A, B, AU B, D, E} be in gt(n,6), such
that A ¢ B and B ¢ A, and each of the sets D1, D" and D" are non-
empty. Then u = {0, A,B,AUB,(A\ B)UD;UD" AU D"}, where
0 #£Dy CANB;and ) # D" C B\ A.

Proof. Let D1, D' and D" be non-empty, then AUD = AUD" € u
implies that A U D is equal to C or E. If AUD = FE, then from
BUD = BUD' we conclude that D" = A\ B. Thus the general form
of p in this case is

pw={0,A,B,AUB,(A\B)UD;uUD" AUuD"},

where ) 2 D1 C AN B; and ) # D" C B\ A.

We note that if AU D = E, then the set of all generalized topologies
obtained in this case is equal to the set of all generalized topologies
obtained in the case AU D = F. O
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