GENERALIZED TOPOLOGIES ON FINITE SETS

Mohammad Reza Ahmadi Zand

Abstract

The number of topologies on a finite set is a famous open problem. In the present paper we discuss a method of obtaining the number of generalized topologies on finite sets.

1. Introduction

The number $T(n)$ of topologies on a finite set of cardinal n is an open question [6]. There is no known simple formula to compute $T(n)$ for arbitrary n. The online Encyclopedia of Integer Sequences presently lists $T(n)$ for $n \leq 18$. Recall that a subset μ of the power set $\exp X$ of a set X is a generalized topology (briefly GT) in X iff $G_{i} \in \mu(i \in I)$ implies $\cup_{i \in I} G_{i} \in \mu$ (in particular, I can be empty so that the defnition implies $\emptyset \in \mu)$. The pair (X, μ) is called a generalized topological space (briefly GTS). A member of μ is called open and a subset F of X is called closed if $X \backslash F \in \mu$. Sets which are simultaneousely open and closed are called open-closed sets. The theory of generalized topological spaces, which was introduced by Á. Császár [5], is one of the most important development of general topology in recent years. A GT on X is a joinsublattice $(\exp X, \subseteq)$ with the minimum element \emptyset, denoted by 0 . Some important counterexamples in topological spaces or GTS can be found in the finite forms (see for example, $[1,3]$).

Let X be an n-element set. Then the number $G T(n)$ of generalized topologies on X is exactly the number of join-sublattices of $(\exp X, \subseteq)$ with 0 . There is no known formula giving $G T(n)$. Let $g t(n, k)$ be the set of all labeled generalized topologies on X having k open sets and $G T(n, k)=|g t(n, k)|$. Thus $G T(n)=\sum_{k=1}^{2^{n}} G T(n, k)$.

Definition 1.1. [7] Let μ be a $G T$ on X and μ^{\prime} a $G T$ on X^{\prime}. A mapping $f: X \rightarrow X^{\prime}$ is $\left(\mu, \mu^{\prime}\right)$-continuous iff $M^{\prime} \in \mu^{\prime}$ implies

Received September 23, 2015. Accepted July 1, 2016.
2010 Mathematics Subject Classification. 54A10, 54A99.
Key words and phrases. generalized topology, finite generalized topology.
$f^{-1}\left(M^{\prime}\right) \in \mu$. If f is bijective and $\left(\mu, \mu^{\prime}\right)$-continuous, moreover f^{-1} is $\left(\mu^{\prime}, \mu\right)$-continuous, then we say that f is a $\left(\mu, \mu^{\prime}\right)$-homeomorphism and (X, μ) and $\left(X^{\prime}, \mu^{\prime}\right)$ are said to be equivalent.

Example 1.2. There is a unique $G T$ on the empty set. Likewise there are two distinct generalized topologies on $\{a\}$: $g \tau=\{\emptyset\}$ and $g \tau^{\prime}=\{\emptyset,\{a\}\}$. Let $X=\{a, b\}$ be a two-element set. There are 7 distinct generalized topologies on X but only 5 inequivalent generalized topologies: $g_{1}=\{\emptyset\}, g_{2}=\{\emptyset,\{a\}\}, g_{3}=\{\emptyset, X\}, g_{4}=\{\emptyset,\{a\}, X\}$ and $g_{5}=\{\emptyset,\{a\},\{b\}, X\}$.
2. A GTS (X, μ), Where $|\mu| \geqq 2^{|X|}-7$

Recall that a $\operatorname{GTS}(X, \mu)$ is said to be a $\mu-T_{1}$ space $[9]$ if for any pair of distinct points x and y of \mathbf{X}, there exists a $U \in \mu$ such that $x \notin U$ and $y \in U$. As [9] a GTS (X, μ) is called $\mu-T_{2}$ if for every distinct points $x, y \in X$, there exist disjoint open sets U_{x} and U_{y} such that $x \in U_{x}$ and $y \in U y$. It is well known that a finite Hausdorff topological space, i.e., a finite $\mu-T_{2}$ topological space, is discrete, but in [2] there is a non-discrete $\mu-T_{2}$ GTS which is finite. Here, we give another example.

Example 2.1. $\mu=\{\emptyset,\{a\},\{b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ is a $\mu-T_{2} G T$ on $X=\{a, b, c\}$, that is not discrete.

Definition 2.2. If a $\operatorname{GTS}(X, \mu)$ which is T_{1} has a base consisting of open-and-closed sets, then it is called zero-dimensional. A GTS (X, μ) which is T_{1} is called completely regular if for every $x \in X$ and every closed subset $F \subset X$ such that $x \notin F$ there exists a continuous function f from X to \mathbb{R} such that $f(x)=0$ and $f(y)=1$ for $y \in F$. If the cardinality of every nonempty member of μ is greater than one, then we say that (X, μ) is crowded.

We give an example of a crowded completely regular GTS which is finite.

Example 2.3. Let $X=\{a, b, c, d\}$ and $\mu=\exp X \backslash\{\{a\},\{b\},\{c\},\{d\}\}$. Then (X, μ) is a zero-dimensional space since

$$
\beta=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\}
$$

is a base for the GTS such that every member of β is closed. Therefore the generalized topological space is completely regular.

Remark 2.4. For $n \geq 2$, the calculations of $G T(n, k)$ are complicated. In the following proposition we give some results about them.

Proposition 2.5. For $n \geq 3$ we have the following.
(I) $G T(n, 1)=G T\left(n, 2^{n}\right)=1$;
(II) $G T(n, 2)=2^{n}-1$;
(III) $G T\left(n, 2^{n}-1\right)=n$ for $n \geq 2$;
(IV) $G T\left(n, 2^{n}-2\right)=\frac{3 n(n-1)}{2}$;
(V) $G T\left(n, 2^{n}-3\right)=\binom{n}{3}+\binom{n}{2}(2 n-3)+\binom{n}{1}\binom{n-1}{2}$;
(VI) $G T\left(n, 2^{n}-4\right)=\binom{n}{4}+\binom{n}{3}[3 n-6]+\binom{n}{2}\left(\binom{n-3}{2}+\frac{n^{2}(n-1)(n-2)}{6}\right.$;
(VII) $G T\left(n, 2^{n}-5\right)=\binom{n}{5}+\binom{n}{4}[4 n-10]+\binom{n}{3}\left(\binom{3 n-6}{2}+\binom{n}{2}\left[\binom{2 n-3}{3}+\right.\right.$ $\left.2\binom{n-1}{2}\right]+\binom{n}{1}\left[3\binom{n-1}{3}+\binom{n-1}{4}\right]$;
(VIII) $G T\left(n, 2^{n}-6\right)=\binom{n}{6}+(5 n-15)\binom{n}{5}+\binom{n}{4}\binom{4 n-10}{2}+\binom{n}{3}\left[\binom{3 n-6}{3}+\right.$ $\left.\left.\binom{3 n-6}{2}\right]+\binom{n}{2}\left[1+\binom{2 n-3}{4}\right)+3\binom{n-1}{3}\right]+n\left[\binom{n-1}{5}+\binom{n-1}{4}\binom{4}{2}+\binom{n-1}{3}\binom{3}{2}\right] ;$
(IX) $G T\left(n, 2^{n}-7\right)=\binom{n}{7}+(6 n-21)\binom{n}{6}+\binom{n}{5}\binom{5 n-15}{2}+\binom{n}{4}\left[\binom{4 n-10}{3}+\right.$ $\left.4\binom{n-1}{2}\right]+\binom{n}{3}\left[\binom{3 n-6}{4}+1+3\binom{n-1}{3}\binom{3}{2}\right]+\binom{n}{2}\left[\binom{2 n-3}{5}+2\binom{n-1}{4}\binom{4}{2}+\right.$ $\left.3\binom{n-1}{3}\binom{3}{2}\right]+n\left[\binom{n-1}{6}+\binom{n-1}{5}\binom{5}{2}+\binom{n-1}{4}\binom{4}{2}+\binom{n-1}{3}\binom{3}{3}\right]$.

Proof. Let μ be a GT in X. (I) and (II). The proofs of (I) and (II) are clear. (III). If $|\mu|=2^{n}-1$, then $\mu=\exp X \backslash\{x\}$ for some $x \in X$. (IV). If $|\mu|=2^{n}-2$, then there exist two elements x, y of X such that $\mu=\exp X \backslash\{\{x\},\{y\}\}$ or $\mu=\exp X \backslash\{\{x\},\{x, y\}\}$. (V). Let $|\mu|=2^{n}-3$. Then there exist three elements $a, b, x \in X$ such that $\mu=\exp X \backslash\{\{a\},\{b\},\{x\}\}, \mu=\exp X \backslash\{\{a\},\{b\},\{a, x\}\}$, or $\mu=\exp X \backslash$ $\{\{a\},\{a, x\}\{a, y\}\}$. (VI). Let $|\mu|=2^{n}-4$. Then μ has one of the following forms:

Case (1): Let $\mu=\exp X \backslash A$; where $A=\{\{a\},\{b\},\{c\},\{d\}\} \subset \exp X$. The set $A=\{\{a\},\{b\},\{c\},\{d\}\}$ is chosen in $\binom{n}{4}$ ways.

Case (2): Let $\mu=\exp X \backslash\{\{a\},\{b\},\{c\}, D\}$; where $a, b, c \in X$ and $D \subset X$. Then D is a two-element set and $D \cap\{a, b, c\} \neq \emptyset, D$ is chosen in $3 n-6$ different ways and the subsets $\{a\},\{b\}$, and $\{c\}$ in $\binom{n}{3}$ different Ways.

Case (3): Let $\mu=\exp X \backslash\{\{a\},\{b\}, C, D\} ;$ where $a, b \in X$ and $C, D \subset X$. Then D and C intersect $\{a, b, c\}$ and $|C|=|D|=2$.

Case (4): Let $\mu=\exp X \backslash\{\{a\}, B, C, D\} ;$ where $a \in X$ and $B, C, D \subset$ X. Then $a \in B \cap C \cap D$ and so $|B|=|C|=|D|=2$ or $|B|=|C|=2$ and $D=B \cup C .\{a\}$ is chosen in n different ways and B, C, D are chosen in $\frac{n(n-1)(n-2)}{6}$ different ways. Similarly, (VII), (VIII) and (IX) hold.

Example 2.6. Let $X=\{a, b, c\}$. Then by the above proposition $G T(3,7)=3, G T(3,6)=9, G T(3,5)=13, G T(3,4)=15, G T(3,3)=$ 12 and $G T(3,2)=7 G T(3,1)=1=G T(3,8)$. Thus, the total number of generalized topologies on X is

$$
G T(3)=\sum_{i=1}^{8} G T(3, i)=61
$$

Example 2.7. Let $X=\{a, b, c, d\}$. Then by the above proposition $G T(4,15)=4, G T(4,14)=18, G T(4,13)=46, G T(4,12)=$ $51, G T(4,11)=174, G T(4,10)=221, G T(4,9)=196, G T(4,2)=15$ and $G T(4,16)=1=G T(4,1)$.

3. A GT with less than seven open sets

Recall that a chain topology on a finite set X, is a topology whose open sets are totally ordered by inclusion. For generalized topological spaces, we have the following definition.

Definition 3.1. A GT-chain on X, is a generalized topology whose open sets are totally ordered by inclusion.

Proposition 3.2. [4, 8] Let $C(n, k)$ be the number of chain topologies on X having k open sets. Then,

$$
C(n, k)=\sum_{i=1}^{n-1}\binom{n}{i} C(i, k-1)=\sum_{i=0}^{k-1}(-1)^{i}\binom{k-1}{i}(k-1-i)^{n}
$$

Corollary 3.3. Let $C G T(n)$ be the totall number of $G T$-chains on X, where $|X| \geq 3$. Then,

$$
C G T(n)=1+\sum_{i=1}^{n} \sum_{k=2}^{i+1} \sum_{j=0}^{k-1}(-1)^{j}\binom{n}{i}\binom{k-1}{j}(k-1-j)^{i}
$$

Proof. If μ is a GT-chain on X , then μ is a chain topology on $A=\cup \mu$. It is clear that any chain topology on a subset B of X is a GT-chain on X . Thus, there is a bijective correspondence between GT-chains on X and chain topologies on subsets of X. Therefore,

$$
C G T(n)=1+\sum_{i=1}^{n}\binom{n}{i} \sum_{k=2}^{i+1} C(i, k)
$$

and so by the above proposition we are done.

Corollary 3.4. Let $C G T(n, m)$ be the totall number of GT-chains on X with m open sets, where $|X|=n$ and $m \leq n+1$. Then,
$C G T(n, m)=\binom{m-1}{0} m^{n}-\binom{m-1}{1}(m-1)^{n}+\cdots+(-1)^{m-1}\binom{m-1}{m-1} 1^{n}$.
Proof. Let μ be a GT-chain on X with m open sets. If $X \notin \mu$, then $\mu \cup\{X\}$ is a chain topology on X with $m+1$ open sets. Otherwise, μ is a chain topology on X with m open sets. Thus by Proposition 3.2,

$$
\begin{aligned}
C G T(n, m) & =C(n, m+1)+C(n, m)=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}(m-i)^{n} \\
& +\sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i}(m-1-i)^{n}=\binom{m}{0} m^{n} \\
& -\left[\binom{m}{1}-\binom{m-1}{0}\right](m-1)^{n}+\cdots+(-1)^{m-1}\left[\binom{m}{m-1}\right. \\
& \left.-\binom{m-1}{m-2}\right] 1^{n}=\binom{m-1}{0} m^{n}-\binom{m-1}{1}(m-1)^{n} \\
& +\cdots+(-1)^{m-1}\binom{m-1}{m-1} 1^{n} .
\end{aligned}
$$

Example 3.5. Let X be a set and $|X|=n$ where $n \in \mathbb{N}$. Then by the above corollary, the total number of GT-chains on X with three open sets is $C G T(n, 3)=3^{n}-2^{n+1}+1$. Similarly $C G T(n, 4)=4^{n}-$ $3^{n+1}+3.2^{n}-1, C G T(n, 5)=5^{n}-4^{n+1}+6.3^{n}-4.2^{n}+1, C G T(n, 6)=$ $6^{n}-5^{n+1}+10.4^{n}-10.3^{n}+5.2^{n}-1$, and $C G T(n, 7)=7^{n}-6^{n+1}+$ $15.5^{n}-20.4^{n}+15.3^{n}-6.2^{n}+1$.

Proposition 3.6. For every $2 \leq n \in \mathbb{N}$ we have
(a) $G T(n, 3)=3^{n}-2^{n+1}+1$;
(b) $G T(n, 4)=4^{n}-3^{n+1}+3.2^{n}-1+\frac{1}{2} \sum_{m=2}^{n} \sum_{i=0}^{m-1}\binom{n}{m}\binom{m}{i}\left(2^{i}-1\right)$.

Proof. . (a) For every $\mu \in g t(n, 3)$ there are a subset B of X and a subset A of B such that $\emptyset \neq A \subsetneq B \subset X$ and $\mu=\{\emptyset, A, B\}$. Thus by Example 3.5, $G T(n, 3)=3^{n}-2^{n+1}+1$.
(b) If $\mu=\{\emptyset, A, B, C\} \in \operatorname{gt}(n, 4)$, then either $A \subset B \subset C$ or $C=$ $A \cup B$. The two cases are disjoint.
Case (1) : This is the number of GT-chains on X having 4 open sets; so by Example 3.5, the total number of generalized topologies in this case is $4^{n}-3^{n+1}+3.2^{n}-1$.

Case (2) : Let C be a subset of X such that

$$
2 \leq m=|C| \leq n
$$

and A be proper and non-empty subset of C. Then, $1 \leq|A|=i<$ m and so $B=(C \backslash A) \cup B_{1}$, where $B_{1} \subsetneq A$. Therefore, the total number of generalized topologies in this case is

$$
\frac{1}{2} \sum_{m=2}^{n} \sum_{i=1}^{m-1}\binom{n}{m}\binom{m}{i}\left(2^{i}-1\right) .
$$

Proposition 3.7. For every $n=|X| \geq 3$ we have $G T(n, 5)=$

$$
\begin{aligned}
5^{n}-4^{n+1}+6.3^{n}-4.2^{n}+1+ & \frac{1}{2} \sum_{m=2}^{n-1} \sum_{i=1}^{m-1}\binom{n}{m}\binom{m}{i}\left(2^{i}-1\right)\left(2^{n-m}-1\right) \\
& +\frac{5}{3} \sum_{m=3}^{n} \sum_{i=2}^{m-1} \sum_{j=1}^{i-1}\binom{n}{m}\binom{m}{i}\binom{i}{j}\left(2^{j}-1\right) .
\end{aligned}
$$

Proof. Let $\mu \in g t(n, 5)$. If μ is a GT-chain, then by Example 3.5, the total number of GT-chains on X is $5^{n}-4^{n+1}+6.3^{n}-4.2^{n}+1$. If μ is not a GT-chain, then there are $A, B \in \mu$ such that $A \nsubseteq B$ and $B \nsubseteq A$, and so $C=A \cup B \in \mu$. Thus, the non-empty members of μ has one of the following forms:
(1) $A \cup B=C \subsetneq D$.
(2) $\emptyset \neq D \subsetneq C=A \cup B$.

The two cases are disjoint.
Case (1) : D can be chosen in $2^{n-m}-1$ ways, where

$$
2 \leq m=|C| \leq n-1 .
$$

Thus by the proof of the above proposition, the total number of generalized topologies in this case is

$$
\frac{1}{2} \sum_{m=2}^{n-1} \sum_{i=1}^{m-1}\binom{n}{m}\binom{m}{i}\left(2^{i}-1\right)\left(2^{n-m}-1\right)
$$

Case (2): Since in this case $3 \leq m=|C| \leq n$, we have $2 \leq i=|A| \leq m-1$.
In this case, $D \cap(A \cap B) \neq \emptyset$ and so

$$
1 \leq|A \cap B|=j \leq i-1 .
$$

Thus the total number of generalized topologies in this case is $n_{1}+n_{2}+n_{3}$, where n_{1}, n_{2} and n_{3} can be computed as follows:
(2I) If D is a nonempty subset of $A \cap B$. Then, by the proof of the above proposition

$$
n_{1}=\frac{1}{2} \sum_{m=3}^{n} \sum_{i=2}^{m-1} \sum_{j=1}^{i-1}\binom{n}{m}\binom{m}{i}\binom{i}{j}\left(2^{j}-1\right)
$$

(2II) If $D=(A \backslash B) \cup(B \backslash A) \cup D_{1}$, where D_{1} is a proper subset of $A \cap B$. Then, $n_{2}=\frac{1}{3} n_{1}$.
(2II) If $D=(A \backslash B) \cup D_{1}$, where D_{1} is a proper subset of $A \cap B$. Then $n_{3}=2 n_{1}$. The proof is complete.

Notation 3.8. Let Y be a subset of $A \cup B$. Then Y can be written as $Y=Y^{\prime} \cup Y_{1} \cup Y^{\prime \prime}$, where $Y^{\prime} \subset A \backslash B, Y_{1} \subset A \cap B$ and $Y^{\prime \prime} \subset B \backslash A$.

Theorem 3.9. Let $\mu=\{\emptyset, A, B, A \cup B, D, E\}$ be in $g t(n, 6)$, such that $A \nsubseteq B$ and $B \nsubseteq A$ and $D, E \subsetneq A \cup B$. If two of the sets $D^{\prime}, D^{\prime \prime}$ and D_{1} are empty and one of them is non-empty, then μ has one of the following forms:
(1) $\mu=\left\{\emptyset, A, B, A \cup B, D_{1},((A \cap B) \backslash I) \cup E_{2}\right\}$, where I is a non-empty subset of D_{1} and $E_{2}=A \backslash B$ or $E_{2}=(A \backslash B) \cup(B \backslash A)$.
(2) $\mu=\left\{\emptyset, A, B, A \cup B, D_{1}, E\right\}$, where $\emptyset \neq D 1 \subset E_{1}=E \subset A \cap B$, $E=E_{1} \cup(B \backslash A) \cup(A \backslash B)$ or $E=E_{1} \cup(B \backslash A)$, where $\emptyset \neq D_{1} \subset$ $E_{1} \subsetneq A \cap B$.
(3) $\mu=\left\{\emptyset, A, B, A \cup B, D_{1}, A \cup E^{\prime \prime}\right\}$, where $\emptyset \subsetneq E^{\prime \prime} \subsetneq B \backslash A$.
(4) $\mu=\left\{\emptyset, A, B, A \cup B, D^{\prime}, D^{\prime} \cup B\right\}$, where $\emptyset \neq D^{\prime} \subsetneq A \backslash B$.
(5) $\mu=\left\{\emptyset, A, B, A \cup B, A \backslash B, B \cup E^{\prime}\right\}$, where $\emptyset \neq E^{\prime} \subsetneq A \backslash B$.
(6) $\mu=\left\{\emptyset, A, B, A \cup B, A \backslash B, E_{1} \cup E_{2}\right\}$, where $E_{2}=(A \backslash B) \cup(B \backslash A)$ or $E_{2}=A \backslash B$.

Proof. Let $C=A \cup B$. If $D=D_{1}$, then $D \cup E=E^{\prime} \cup\left(D_{1} \cup E_{1}\right) \cup E^{\prime \prime}$ and so $|\mu|=6$ implies that there are the following cases which are disjoint:
(1) If $D \cup E=A$, then $E^{\prime \prime}=\emptyset$, and so $A=E^{\prime} \cup\left(D_{1} \cup E_{1}\right)$, i.e., $D_{1} \cup E_{1}=A \cap B$ and $E^{\prime}=A \backslash B$. Thus $E_{1}=(A \cap B) \backslash I$, where I is a non-empty subsets of D_{1}. We note that if $D \cup E=B$, then the set of generalized topologies in this case is coincided with the set of generalized topologies in the case $D \cup E=A$.
(2) If $D \cup E=C$, then $\left(D_{1} \cup E_{1}\right) \cup E^{\prime} \cup E^{\prime \prime}=C$. Thus, $A \backslash B=$ $E^{\prime}, B \backslash A=E^{\prime \prime}$ and $D_{1} \cup E_{1}=A \cap B$, i.e., $E=(A \backslash B) \cup(B \backslash A) \cup E_{1}$ and $E_{1}=(A \cap B) \backslash I$, where I is a non-empty subset of D_{1}.
(3) If $E=D \cup E$, then $E=\left(D_{1} \cup E_{1}\right) \cup E^{\prime} \cup E^{\prime \prime}$, and so $D_{1} \subset E_{1}$. We note that $E \cup A=E^{\prime \prime} \cup A \in \mu$ can not be equal to B or $D=D_{1}$ so there are the following cases which are disjoint.
(3I) If $E \cup A=E^{\prime \prime} \cup A=A$, then $E^{\prime \prime}=\emptyset$ and $E \subset A$. But $B \cup E=B \cup E^{\prime} \in \mu$ implies that $E^{\prime}=\emptyset$ or $E^{\prime}=A \backslash B$. Thus $D=D_{1} \subsetneq E=E_{1} \subset A \cap B$ or $E=E_{1} \cup(A \backslash B)$, where $D_{1} \subset E_{1} \subsetneq A \cap B$.
(3II) If $E \cup A=E^{\prime \prime} \cup A=C$, then $E^{\prime \prime}=B \backslash A$ and $B \cup E^{\prime}=B \cup E \in \mu$ implies that $E^{\prime}=\emptyset$ or $E^{\prime}=A \backslash B$. Thus $E=E_{1}, E=$ $E_{1} \cup(A \backslash B) \cup(B \backslash A)$ or $E=E_{1} \cup(B \backslash A)$. We note that if $E=E_{1} \cup(B \backslash A)$, then the set of generalized topologies in this case is coincided with the set of generalized topologies in the case $E=E_{1} \cup(A \backslash B)$.
(3III) If $E \cup A=E^{\prime \prime} \cup A=E$, then $A \subset E$. Thus $E^{\prime}=A \backslash B, E_{1}=$ $A \cap B$ and $E^{\prime \prime}$ is a non-empty and proper subset of $B \backslash A$.
Let $D_{1}=D^{\prime \prime}=\emptyset$ and $\emptyset \neq D^{\prime}$. Then $D \cup A=A$ and $D^{\prime} \cup B=D \cup B$ is equal to E or C. Thus there are the following cases which are disjoint.
(4) If $D^{\prime} \cup B=E$, then D^{\prime} is a non-empty and proper subset of $A \backslash B$.
(5) If $D^{\prime} \cup B=C$, then $D^{\prime}=D=A \backslash B$. Since $E \cup D=E_{1} \cup(A \backslash$ $B) \cup E^{\prime \prime} \in \mu$, we have the following cases which are disjoint:
(5I) If $E_{1} \cup(A \backslash B) \cup E^{\prime \prime}=E \cup D=A$. Then $E^{\prime \prime}=\emptyset$ and $E_{1}=A \cap B$ and so $E=E^{\prime} \cup(A \cap B)$. Thus $E \cup B=E^{\prime} \cup B$ implies that $E^{\prime}=\emptyset$ and so $E=A \cap B$; which is not a new GT.
(5II) If $E_{1} \cup(A \backslash B) \cup E^{\prime \prime}=E \cup D=C$, then $E=B \cup E^{\prime}$. Since $E \neq \mathrm{B}$ and $E \neq C$, we have $\emptyset \neq E^{\prime} \subsetneq A \backslash B$.
If $E_{1} \cup(A \backslash B) \cup E^{\prime \prime}=E \cup D=E$, then $E^{\prime}=A \backslash B=D$ and so $E=(A \backslash B) \cup E_{1} \cup E^{\prime \prime}$. Since $A \cup E=A \cup E^{\prime \prime}$ there are two cases which are disjoint:
(5III) If $A \cup E^{\prime \prime}=C$, then $E^{\prime \prime}=B \backslash A$ and so $E=(A \backslash B) \cup E_{1} \cup(B \backslash A)$. (5IV) If $A \cup E^{\prime \prime}=A$, then $E^{\prime \prime}=\emptyset$ and so $E=(A \backslash B) \cup E_{1}$.
We note that if $D_{1}=\emptyset=D^{\prime}$ and $D^{\prime \prime} \neq \emptyset$, then the set of gener alized topologies in this case is coincided with the set of generalized topologies in the case $D_{1}=\emptyset=D^{\prime \prime}$ and $D^{\prime} \neq \emptyset$.

Theorem 3.10. Let $\mu=\{\emptyset, A, B, A \cup B, D, E\}$ be in $g t(n, 6)$, such that $A \nsubseteq B$ and $B \nsubseteq A$ and $B \nsubseteq A$ and $D, E \subsetneq A \cup B$. If one of the sets $D^{\prime}, D^{\prime \prime}$ and D_{1} is empty and two of them are non-empty, then μ has one of the following forms:
(1) $\mu=\left\{\emptyset, A, B, A \cup B, D_{1} \cup D^{\prime}, D^{\prime} \cup B\right\}$, where D_{1} is non-empty and $\emptyset \neq D^{\prime} \subsetneq A \backslash B$.
(2) $\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1},(A \backslash B) \cup((A \cap B) \backslash I)\right\}$, where I is a non-empty subset of $A \cap B$ or $\mu=\{\emptyset, A, B, A \cup B,(A \backslash B) \cup$ $\left.D_{1},(A \cap B) \backslash I\right\}$, where $I \subset A \cap B$.
(3) $\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1}, E_{2} \cup E_{1}\right\}$, where $E_{2}=A \backslash B$ or $E_{2}=(A \backslash B) \cup(B \backslash A)$ and $D 1 \subsetneq E_{1} \subsetneq A \cap B$.
(4) $\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1}, E_{2} \cup((A \cap B) \backslash I)\right\}$, where E_{2} is $B \backslash A$ or $(B \backslash A) \cup(A \backslash B)$ and I is a non-empty subset of D_{1}.
(5) $\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D^{\prime \prime}, A \cup D^{\prime \prime}\right\}$, where $\emptyset \neq D^{\prime \prime} \subsetneq B \backslash A$.

Proof. Let $C=A \cup B$. If D_{1} and D^{\prime} are non-empty and $D^{\prime \prime}=\emptyset$. Then $D=D_{1} \cup D^{\prime}, D \cup A=A$ and $D \cup B=D^{\prime} \cup B$ is equal to E or C. Thus we have the following cases which are disjoint:
(1) If $D^{\prime} \cup B=D \cup B=E$. Then $\emptyset \neq D^{\prime}$ is a proper subset of $A \backslash B$ since $E \neq C$. Thus the general form of μ in this case is

$$
\mu=\left\{\emptyset, A, B, A \cup B, D_{1} \cup D^{\prime}, D^{\prime} \cup B\right\}
$$

(2) If $D \cup B=C$, then $D^{\prime}=A \backslash B$ and so $D=(A \backslash B) \cup D_{1}$. Thus $\emptyset \neq D_{1}$ is a proper subset of $A \cap B$. Since $D \cup E=\left(D_{1} \cup E_{1}\right) \cup$ $(A \backslash B) \cup E^{\prime \prime} \in \mu$, we have the following cases which are disjoint:
(2I) If $D \cup E=A$, then $\left(D_{1} \cup E_{1}\right) \cup(A \backslash B) \cup E^{\prime \prime}=A$ and so $E^{\prime \prime}=$ $\emptyset, D_{1} \cup E_{1}=A \cap B$ and $E=E_{1} \cup E^{\prime}$. If $E^{\prime} \subsetneq A \backslash B$, then $E^{\prime}=\emptyset$. Thus μ has the following form:

$$
\left.\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1},(A \cap B) \backslash I\right)\right\}
$$

where I is a subset of D_{1}. If $E^{\prime}=A \backslash B$, then $E_{1}=(A \cap B) \backslash I$, where I is a non-empty subset of D_{1}. Thus μ has the following form:

$$
\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1},(A \backslash B) \cup((A \cap B) \backslash I)\right\}
$$

(3) If $D_{1} \cup(A \backslash B) \cup E=D \cup E=E$, then $E^{\prime}=A \backslash B . A \cup E=A \cup E^{\prime \prime}$ implies that $E^{\prime \prime}$ is equal to \emptyset or $B \backslash A$ and so $E=(A \backslash B) \cup E_{1}$ or $E=(A \backslash B) \cup(B \backslash A) \cup E_{1}$. Thus the general form of μ in this case is

$$
\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1}, E_{1} \cup E_{2}\right\}
$$

where $E_{2}=(A \backslash B)$ or $E_{2}=(A \backslash B) \cup(B \backslash A)$ and $D_{1} \subsetneq E 1 \subsetneq A \cap B$.
(4) If $D_{1} \cup(A \backslash B) \cup E=D \cup E=C$, then $D_{1} \cup E_{1}=A \cap B$ and $E^{\prime \prime}=B \backslash A$. Thus $E \cup B=E^{\prime} \cup B$ implies that $E^{\prime}=\emptyset$ or $E^{\prime}=A \backslash B$
and $E_{1}=(A \cap B) \backslash I$, where I is a non-empty subset of D_{1} and so the general form of μ in this case is

$$
\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1}, E_{2} \cup((A \cap B) \backslash I)\right\}
$$

where E_{2} is $B \backslash A$ or $(B \backslash A) \cup(A \backslash B)$, and I is a non-empty subset of D_{1}. We note that if D_{1} and $D^{\prime \prime}$ are nonempty and $D^{\prime}=\emptyset$. Then the set of generalized topologies in this case is coincided with the set of generalized topologies in the case $D_{1} \neq \emptyset \neq D^{\prime}$ and $D^{\prime \prime}=\emptyset$. Let D^{\prime} and $D^{\prime \prime}$ be non-empty and $D_{1}=\emptyset$. Then $D=D^{\prime} \cup D^{\prime \prime}$ and so $B \cup D=B \cup D^{\prime} \in \mu$ and $A \cup D=A \cup D^{\prime \prime} \in \mu$. Since $A \cup D^{\prime \prime}$ is equal to E or C, the following cases are disjoint:
(5) If $A \cup D^{\prime \prime}=E$, then $B \cup D^{\prime}=C$ and so $D^{\prime}=A \backslash B$. Thus the general form of μ in this case is

$$
\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D^{\prime \prime}, A \cup D^{\prime \prime}\right\}
$$

where $\emptyset \neq D^{\prime \prime} \subsetneq B \backslash A$. We note that if $A \cup D^{\prime \prime}=C$, then $D^{\prime \prime}=B \backslash A$. Thus $D=D^{\prime} \cup(B \backslash A)$ and $D \cup B=D^{\prime} \cup B$, and so the set of generalized topologies in this case is coincided with the set of generalized topologies in the case $A \cup D^{\prime \prime}=E$.

Theorem 3.11. Let $\mu=\{\emptyset, A, B, A \cup B, D, E\}$ be in $g t(n, 6)$, such that $A \nsubseteq B$ and $B \nsubseteq A$, and each of the sets D_{1}, D^{\prime} and $D^{\prime \prime}$ are nonempty. Then $\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1} \cup D^{\prime \prime}, A \cup D^{\prime \prime}\right\}$, where $\emptyset \neq D_{1} \subsetneq A \cap B$; and $\emptyset \neq D^{\prime \prime} \subsetneq B \backslash A$.

Proof. Let D_{1}, D^{\prime} and $D^{\prime \prime}$ be non-empty, then $A \cup D=A \cup D^{\prime \prime} \in \mu$ implies that $A \cup D$ is equal to C or E. If $A \cup D=E$, then from $B \cup D=B \cup D^{\prime}$ we conclude that $D^{\prime}=A \backslash B$. Thus the general form of μ in this case is

$$
\mu=\left\{\emptyset, A, B, A \cup B,(A \backslash B) \cup D_{1} \cup D^{\prime \prime}, A \cup D^{\prime \prime}\right\}
$$

where $\emptyset \neq D_{1} \subsetneq A \cap B$; and $\emptyset \neq D^{\prime \prime} \subsetneq B \backslash A$.
We note that if $A \cup D=E$, then the set of all generalized topologies obtained in this case is equal to the set of all generalized topologies obtained in the case $A \cup D=E$.

Acknowledgement. The author thanks the referees for careful reading and valuable comments.

References

[1] M. R. Ahmadi Zand, An algebraic characterization of Blumberg spaces, Quaestiones Mathematicae 33(2) (2010), 223-230.
[2] M. R. Ahmadi Zand and R. Khayyeri, Generalized G_{δ}-door spaces, submitted.
[3] M. R. Ahmadi Zand and R. Khayyeri, Generalized G_{δ}-submaximal spaces, Acta Math. Hungar. 149 (2) (2016), 274-285.
[4] M. Benoumhani, The number of topologies on a finite set, J. of Integer Sequences Vol. 9, Article 06.2.6, (2006).
[5] Á. Császár, Generalized topology, generalized continuity, Acta. Math. Hungar. 96 (2002), 351-357.
[6] J. Hoitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000), 333-341.
[7] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar. 128 (2010), 299-306.
[8] D. Stephen, Topology on finite sets, Amer. Math. Monthly 75 (1968), 739-741.
[9] X. Ge and Y. Ge, -Separations in generalized topological spaces, Appl. Math. J. Chinese Univ. 25 (2010), 243-252.

Mohammad Reza Ahmadi Zand
Department of Mathematics, Yazd University, Yazd, Iran.
E-mail: mahmadi@yazd.ac.ir

