DOI QR코드

DOI QR Code

Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals

  • Hyun, Ja-shil (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University) ;
  • Park, Sung Jean (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University)
  • 투고 : 2016.07.10
  • 심사 : 2016.09.01
  • 발행 : 2016.09.20

초록

Copper is an elemental ion in living organisms. CopP from Helicobacter Pylori (HpCopP) is a copper(I)-binding protein and was suggested as regulator of copper metabolism in vivo. Previously, the metal binding property of HpCopP for Ag(I), Cu(I), and Cu(II) as well as the tertiary structure of HpCopP was shown. In this study, the dynamic profiles of HpCopP depending on metal binding were studied using ${^1H}-^{15}N$ steady-state NOE analysis. The heteroNOE experiment was performed for apo-CopP or metal-bound CopP. The obtained NOE values were analyzed and compared to figure out the effect of metals on the structural flexibility of HpCopP. As a result, Ag(I) and Cu(I) ions improved the rigidity of the structure while Cu(II) ion increased the flexibility of the structure, suggesting the oxidation of the CXXC motif decreases the structural stability of HpCopP.

키워드

참고문헌

  1. M. Solioz, and J. V. Stoyanov, FEMS Microbiol. Rev. 27, 183 (2003) https://doi.org/10.1016/S0168-6445(03)00053-6
  2. M. M. Pena, J. Lee, and D. J. Thiele, J. Nutr. 129, 1251 (1999) https://doi.org/10.1093/jn/129.7.1251
  3. A. C. Rosenzweig, Acc. Chem. Res. 34, 119 (2001) https://doi.org/10.1021/ar000012p
  4. M. Solioz, Biochem. Soc. Trans. 30, 688 (2002) https://doi.org/10.1042/bst0300688
  5. L. Banci, I. Bertini, R. Del Conte, J. Markey, and F. J. Ruiz-Duenas, Biochemistry 40, 15660 (2001) https://doi.org/10.1021/bi0112715
  6. A. Odermatt, and M. Solioz, J. Biol. Chem. 270, 4349 (1995) https://doi.org/10.1074/jbc.270.9.4349
  7. P. Cobine, W. A. Wickramasinghe, M. D. Harrison, T. Weber, M. Solioz, and C. T. Dameron, FEBS Lett. 445, 27 (1999) https://doi.org/10.1016/S0014-5793(99)00091-5
  8. Banci, I. Bertini, S. Ciofi-Baffoni, R. Del Conte, and L. Gonnelli, Biochemistry 42, 1939 (2003) https://doi.org/10.1021/bi027096p
  9. D. Beier, G. Spohn, R. Rappuoli, and V. Scarlato, J. Bacteriol. 179, 4676 (1997) https://doi.org/10.1128/jb.179.15.4676-4683.1997
  10. D. Bayle, S. Wangler, T. Weitzenegger, W. Steinhilber, J. Volz, M. Przybylski, K. P. Schafer, G. Sachs, and K. Melchers, J. Bacteriol. 180, 317 (1998)
  11. A. Urvoas, B. Amekraz, C. Moulin, L. L. Clainche, R. Stocklin, and M. Moutiez, Rapid Commun. Mass Spectrom. 17, 1889 (2003) https://doi.org/10.1002/rcm.1130
  12. S. Mana-Capelli, A. K. Mandal, and J. M. Arguello, J. Biol. Chem. 278, 40534 (2003) https://doi.org/10.1074/jbc.M306907200
  13. F. Arnesano, L. Banci, I. Bertini, S. Mangani, and A. R. Thompsett, Proc. Natl. Acad. Sci. U. S. A. 100, 3814 (2003) https://doi.org/10.1073/pnas.0636904100
  14. S. J. Park, Y. S. Jung, J. S. Kim, M. D. Seo, and B. J. Lee, Proteins 71, 1007 (2008) https://doi.org/10.1002/prot.21957
  15. S. J. Park, J. Kor. Mag. Reson. Soc. 18, 47 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.047
  16. J. Hyun, and S. J. Park, J. Kor. Magn. Reson. Soc. 19, 149 (2015) https://doi.org/10.6564/JKMRS.2015.19.3.149
  17. N. A. Farrow, R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. Shoelson, T. Pawson, J. D. Forman-Kay, and L. E. Kay, Biochemistry 33, 5984 (1994) https://doi.org/10.1021/bi00185a040
  18. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)
  19. P. A. Cobine, G. N. George, D. J. Winzor, M. D. Harrison, S. Mogahaddas, and C. T. Dameron,. Biochemistry 39, 6857 (2000) https://doi.org/10.1021/bi000015+