DOI QR코드

DOI QR Code

Post-Translational Modifications of Cardiac Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation

  • Marquez, Jubert (Department of Health Sciences and Technology, Graduate School of Inje University) ;
  • Lee, Sung Ryul (Department of Health Sciences and Technology, Graduate School of Inje University) ;
  • Kim, Nari (Department of Health Sciences and Technology, Graduate School of Inje University) ;
  • Han, Jin (Department of Health Sciences and Technology, Graduate School of Inje University)
  • Received : 2015.09.07
  • Accepted : 2015.10.27
  • Published : 2016.01.30

Abstract

Protein post-translational modifications (PTMs) are crucial in regulating cellular biology by playing key roles in processes such as the rapid on and off switching of signaling network and the regulation of enzymatic activities without affecting gene expressions. PTMs lead to conformational changes in the tertiary structure of protein and resultant regulation of protein function such as activation, inhibition, or signaling roles. PTMs such as phosphorylation, acetylation, and S-nitrosylation of specific sites in proteins have key roles in regulation of mitochondrial functions, thereby contributing to the progression to heart failure. Despite the extensive study of PTMs in mitochondrial proteins much remains unclear. Further research is yet to be undertaken to elucidate how changes in the proteins may lead to cardiovascular and metabolic disease progression in particular. We aimed to summarize the various types of PTMs that occur in mitochondrial proteins, which might be associated with heart failure. This study will increase the understanding of cardiovascular diseases through PTM.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Grotenbreg G, Ploegh H. Chemical biology: dressed-up proteins. Nature 2007;446:993-5. https://doi.org/10.1038/446993a
  2. Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007;8:947-56. https://doi.org/10.1038/nrm2293
  3. Morrison RS, Kinoshita Y, Johnson MD, et al. Proteomic analysis in the neurosciences. Mol Cell Proteomics 2002;1:553-60. https://doi.org/10.1074/mcp.R200004-MCP200
  4. Fukuda H, Sano N, Muto S, Horikoshi M. Simple histone acetylation plays a complex role in the regulation of gene expression. Brief Funct Genomic Proteomic 2006;5:190-208. https://doi.org/10.1093/bfgp/ell032
  5. Chu S, Ferro TJ. Sp1: regulation of gene expression by phosphorylation. Gene 2005;348:1-11. https://doi.org/10.1016/j.gene.2005.01.013
  6. Li X, Foley EA, Kawashima SA, et al. Examining post-translational modification-mediated protein-protein interactions using a chemical proteomics approach. Protein Sci 2013;22:287-95. https://doi.org/10.1002/pro.2210
  7. Chavez JD, Weisbrod CR, Zheng C, Eng JK, Bruce JE. Protein interactions, post-translational modifications and topologies in human cells. Mol Cell Proteomics 2013;12:1451-67. https://doi.org/10.1074/mcp.M112.024497
  8. Wang S, Ionescu R, Peekhaus N, Leung JY, Ha S, Vlasak J. Separation of post-translational modifications in monoclonal antibodies by exploiting subtle conformational changes under mildly acidic conditions. J Chromatogr A 2010;1217:6496-502. https://doi.org/10.1016/j.chroma.2010.08.044
  9. Slade DJ, Subramanian V, Fuhrmann J, Thompson PR. Chemical and biological methods to detect post-translational modifications of arginine. Biopolymers 2014;101:133-43. https://doi.org/10.1002/bip.22256
  10. Warnecke A, Sandalova T, Achour A, Harris RA. PyTMs: a useful PyMOL plugin for modeling common post-translational modifications. BMC Bioinformatics 2014;15:370. https://doi.org/10.1186/s12859-014-0370-6
  11. Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 2012;4:565-83.
  12. Liddy KA, White MY, Cordwell SJ. Functional decorations: posttranslational modifications and heart disease delineated by targeted proteomics. Genome Med 2013;5:20. https://doi.org/10.1186/gm424
  13. Han SJ, Lonard DM, O'Malley BW. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab 2009;20:8-15. https://doi.org/10.1016/j.tem.2008.10.001
  14. Lonard DM, O'Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 2007;27:691-700. https://doi.org/10.1016/j.molcel.2007.08.012
  15. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signaldependent programs of transcriptional response. Genes Dev 2006;20:1405-28. https://doi.org/10.1101/gad.1424806
  16. Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014;3:23. https://doi.org/10.1186/2047-9158-3-23
  17. Kemper JK. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta 2011;1812:842-50. https://doi.org/10.1016/j.bbadis.2010.11.011
  18. Butkinaree C, Park K, Hart GW. O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 2010;1800:96-106. https://doi.org/10.1016/j.bbagen.2009.07.018
  19. Ito K. Impact of post-translational modifications of proteins on the inflammatory process. Biochem Soc Trans 2007;35:281-3. https://doi.org/10.1042/BST0350281
  20. Moreno-Gonzalo O, Villarroya-Beltri C, Sanchez-Madrid F. Posttranslational modifications of exosomal proteins. Front Immunol 2014;5:383.
  21. Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014;23: 1077-93. https://doi.org/10.1002/pro.2494
  22. Peng M, Scholten A, Heck AJ, van Breukelen B. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. J Proteome Res 2014;13:249-59. https://doi.org/10.1021/pr4005579
  23. Koc EC, Koc H. Regulation of mammalian mitochondrial translation by post-translational modifications. Biochim Biophys Acta 2012; 1819:1055-66. https://doi.org/10.1016/j.bbagrm.2012.03.003
  24. Zhang J, Lin A, Powers J, et al. Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial proteome design: from molecular identity to pathophysiological regulation. J Gen Physiol 2012;139:395-406. https://doi.org/10.1085/jgp.201210797
  25. Deng N, Zhang J, Zong C, et al. Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria. Mol Cell Proteomics 2011;10:M110.000117. https://doi.org/10.1074/mcp.M110.000117
  26. Papanicolaou KN, O'Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 2014;5:301.
  27. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 2011;7:58-63. https://doi.org/10.1038/nchembio.495
  28. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011;80:825-58. https://doi.org/10.1146/annurev-biochem-060608-102511
  29. Gucek M, Murphy E. What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 2010;88:211-8. https://doi.org/10.1093/cvr/cvq277
  30. Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 2012;492:199-204. https://doi.org/10.1038/nature11700
  31. Hollander JM, Baseler WA, Dabkowski ER. Proteomic remodeling of mitochondria in heart failure. Congest Heart Fail 2011;17:262-8. https://doi.org/10.1111/j.1751-7133.2011.00254.x
  32. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med 2012;366:54-63. https://doi.org/10.1056/NEJMra1112570
  33. Chen J, Normand SL, Wang Y, Krumholz HM. National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998-2008. JAMA 2011;306:1669-78. https://doi.org/10.1001/jama.2011.1474
  34. Jhund PS, Macintyre K, Simpson CR, et al. Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation 2009;119:515-23. https://doi.org/10.1161/CIRCULATIONAHA.108.812172
  35. Lee HA, Park H. Trends in ischemic heart disease mortality in Korea, 1985-2009: an age-period-cohort analysis. J Prev Med Public Health 2012;45:323-8. https://doi.org/10.3961/jpmph.2012.45.5.323
  36. Park JJ, Choi DJ. Treatment of heart failure with reduced ejection fraction: current update. Korean J Med 2015;88:127-34. https://doi.org/10.3904/kjm.2015.88.2.127
  37. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev 2013;18:607-22. https://doi.org/10.1007/s10741-012-9340-0
  38. White MY, Edwards AV, Cordwell SJ, Van Eyk JE. Mitochondria: a mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2008;2:845-61. https://doi.org/10.1002/prca.200780135
  39. Haq S, Choukroun G, Lim H, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001;103:670-7. https://doi.org/10.1161/01.CIR.103.5.670
  40. De Sousa E, Veksler V, Minajeva A, et al. Subcellular creatine kinase alterations. Implications in heart failure. Circ Res 1999;85:68-76. https://doi.org/10.1161/01.RES.85.1.68
  41. van der Velden J, Papp Z, Zaremba R, et al. Increased $Ca^{2+}$-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res 2003;57:37-47. https://doi.org/10.1016/S0008-6363(02)00606-5
  42. Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 2012;110:1109-24. https://doi.org/10.1161/CIRCRESAHA.111.246140
  43. Boudina S, Laclau MN, Tariosse L, et al. Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart. Am J Physiol Heart Circ Physiol 2002;282:H821-31. https://doi.org/10.1152/ajpheart.00471.2001
  44. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996;94:2837-42. https://doi.org/10.1161/01.CIR.94.11.2837
  45. Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006;23: 607-18. https://doi.org/10.1016/j.molcel.2006.06.026
  46. Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40. https://doi.org/10.1126/science.1175371
  47. Wagner GR, Payne RM. Mitochondrial acetylation and diseases of aging. J Aging Res 2011;2011:234875.
  48. O'Rourke B, Van Eyk JE, Foster DB. Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 2011;17:269-82. https://doi.org/10.1111/j.1751-7133.2011.00266.x
  49. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 2013;61:599-610. https://doi.org/10.1016/j.jacc.2012.08.1021
  50. Kurdi M, Booz GW. Focus on mitochondria dysfunction and dysregulation in heart failure: towards new therapeutic strategies to improve heart function. Congest Heart Fail 2011;17:255-6. https://doi.org/10.1111/j.1751-7133.2011.00269.x
  51. Rosca M, Minkler P, Hoppel CL. Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim Biophys Acta 2011;1807:1373-82. https://doi.org/10.1016/j.bbabio.2011.02.003
  52. Karamanlidis G, Lee CF, Garcia-Menendez L, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 2013;18:239-50. https://doi.org/10.1016/j.cmet.2013.07.002
  53. Hughes WA, Halestrap AP. The regulation of branched-chain 2-oxo acid dehydrogenase of liver, kidney and heart by phosphorylation. Biochem J 1981;196:459-69. https://doi.org/10.1042/bj1960459
  54. Johnson LN. The regulation of protein phosphorylation. Biochem Soc Trans 2009;37(Pt 4):627-41. https://doi.org/10.1042/BST0370627
  55. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 1995;9:576-96. https://doi.org/10.1096/fasebj.9.8.7768349
  56. Barford D. Protein phosphatases. Curr Opin Struct Biol 1995;5:728-34. https://doi.org/10.1016/0959-440X(95)80004-2
  57. Pagliarini DJ, Dixon JE. Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 2006;31:26-34. https://doi.org/10.1016/j.tibs.2005.11.005
  58. Sun W, Liu Q, Leng J, Zheng Y, Li J. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sci 2015;121:97-103. https://doi.org/10.1016/j.lfs.2014.11.030
  59. Strumilo S. Short-term regulation of the mammalian pyruvate dehydrogenase complex. Acta Biochim Pol 2005;52:759-64.
  60. Patel MS, Korotchkina LG. Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans 2006;34(Pt 2):217-22. https://doi.org/10.1042/BST0340217
  61. Gudi R, Bowker-Kinley MM, Kedishvili NY, Zhao Y, Popov KM. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem 1995;270:28989-94. https://doi.org/10.1074/jbc.270.48.28989
  62. Patel MS, Korotchkina LG. Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Exp Mol Med 2001;33:191-7. https://doi.org/10.1038/emm.2001.32
  63. Popov KM, Kedishvili NY, Zhao Y, Shimomura Y, Crabb DW, Harris RA. Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases. J Biol Chem 1993;268: 26602-6.
  64. Kennelly PJ, Potts M. Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. J Bacteriol 1996;178:4759-64. https://doi.org/10.1128/jb.178.16.4759-4764.1996
  65. Wolanin PM, Thomason PA, Stock JB. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 2002;3:REVIEWS3013.1-3013.8.
  66. Baker JC, Yan X, Peng T, Kasten S, Roche TE. Marked differences between two isoforms of human pyruvate dehydrogenase kinase. J Biol Chem 2000;275:15773-81. https://doi.org/10.1074/jbc.M909488199
  67. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 1998;329(Pt 1):191-6. https://doi.org/10.1042/bj3290191
  68. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 2003;284:E855-62. https://doi.org/10.1152/ajpendo.00526.2002
  69. Roche TE, Hiromasa Y, Turkan A, et al. Essential roles of lipoyl domains in the activated function and control of pyruvate dehydrogenase kinases and phosphatase isoform 1. Eur J Biochem 2003;270:1050-6. https://doi.org/10.1046/j.1432-1033.2003.03468.x
  70. Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 1974;141:761-74. https://doi.org/10.1042/bj1410761
  71. Xu M, Nagasaki M, Obayashi M, Sato Y, Tamura T, Shimomura Y. Mechanism of activation of branched-chain alpha-keto acid dehydrogenase complex by exercise. Biochem Biophys Res Commun 2001;287:752-6. https://doi.org/10.1006/bbrc.2001.5647
  72. Zhang B, Zhao Y, Harris RA, Crabb DW. Molecular defects in the E1 alpha subunit of the branched-chain alpha-ketoacid dehydrogenase complex that cause maple syrup urine disease. Mol Biol Med 1991;8: 39-47.
  73. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK. Human heart failure: cAMP stimulation of SR Ca($2^+$)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 1999;277(2 Pt 2):H474-80.javascript:checkRefBr('', 'next');
  74. Scacco S, Vergari R, Scarpulla RC, et al. cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 2000;275:17578-82. https://doi.org/10.1074/jbc.M001174200
  75. Papa S, De Rasmo D, Scacco S, et al. Mammalian complex I: a regulable and vulnerable pacemaker in mitochondrial respiratory function. Biochim Biophys Acta 2008;1777:719-28. https://doi.org/10.1016/j.bbabio.2008.04.005
  76. Palmisano G, Sardanelli AM, Signorile A, Papa S, Larsen MR. The phosphorylation pattern of bovine heart complex I subunits. Proteomics 2007;7:1575-83. https://doi.org/10.1002/pmic.200600801
  77. Fang JK, Prabu SK, Sepuri NB, et al. Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion. FEBS Lett 2007;581:1302-10. https://doi.org/10.1016/j.febslet.2007.02.042
  78. Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG. Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 2006;281:2061-70. https://doi.org/10.1074/jbc.M507741200
  79. Lee S. Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicol Res 2013;29:81-6. https://doi.org/10.5487/TR.2013.29.2.081
  80. Sack MN, Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol 2012;4. pii: a013102.
  81. Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem 2012;52:23-35. https://doi.org/10.1042/bse0520023
  82. Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 2006;103:10230-5. https://doi.org/10.1073/pnas.0604392103
  83. Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A 2006;103:10224-9. https://doi.org/10.1073/pnas.0603968103
  84. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008;28:6384-401. https://doi.org/10.1128/MCB.00426-08
  85. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009;119:2758-71.
  86. Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010;464:121-5. https://doi.org/10.1038/nature08778
  87. Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010;327:1000-4. https://doi.org/10.1126/science.1179689
  88. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 2008;382:790-801. https://doi.org/10.1016/j.jmb.2008.07.048
  89. Ghanta S, Grossmann RE, Brenner C. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit Rev Biochem Mol Biol 2013;48:561-74. https://doi.org/10.3109/10409238.2013.838204
  90. Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27:8807-14. https://doi.org/10.1128/MCB.01636-07
  91. Mathias RA, Greco TM, Oberstein A, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014;159: 1615-25. https://doi.org/10.1016/j.cell.2014.11.046
  92. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005;6:150-66. https://doi.org/10.1038/nrm1569
  93. Benhar M, Forrester MT, Hess DT, Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 2008;320:1050-4. https://doi.org/10.1126/science.1158265
  94. Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA. Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 2007;46:8472-83. https://doi.org/10.1021/bi700449x
  95. Moon KH, Kim BJ, Song BJ. Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation. FEBS Lett 2005;579:6115-20. https://doi.org/10.1016/j.febslet.2005.09.082
  96. Wolosker H, Panizzutti R, Engelender S. Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Lett 1996;392:274-6. https://doi.org/10.1016/0014-5793(96)00829-0
  97. Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA. Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 1998;30:979-88. https://doi.org/10.1006/jmcc.1998.0662
  98. Zhang J, Jin B, Li L, Block ER, Patel JM. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am J Physiol Cell Physiol 2005;288:C840-9. https://doi.org/10.1152/ajpcell.00325.2004
  99. Costa NJ, Dahm CC, Hurrell F, Taylor ER, Murphy MP. Interactions of mitochondrial thiols with nitric oxide. Antioxid Redox Signal 2003;5: 291-305. https://doi.org/10.1089/152308603322110878
  100. Zhang Y, Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med 2005;38:831-8. https://doi.org/10.1016/j.freeradbiomed.2004.12.016
  101. Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell 2010;142:682-5. https://doi.org/10.1016/j.cell.2010.08.011
  102. Seo J, Lee KJ. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 2004;37:35-44.
  103. Ramirez-Correa GA, Ma J, Slawson C, et al. Removal of abnormal myofilament O-GlcNAcylation restores $Ca2^+$ sensitivity in diabetic cardiac muscle. Diabetes 2015;64:3573-87. https://doi.org/10.2337/db14-1107
  104. Matic I, Schimmel J, Hendriks IA, et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 2010;39:641-52. https://doi.org/10.1016/j.molcel.2010.07.026
  105. Yao Q, Li H, Liu BQ, Huang XY, Guo L. SUMOylation-regulated protein phosphorylation, evidence from quantitative phosphoproteomics analyses. J Biol Chem 2011;286:27342-9. https://doi.org/10.1074/jbc.M111.220848
  106. Rardin MJ, He W, Nishida Y, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 2013;18:920-33. https://doi.org/10.1016/j.cmet.2013.11.013
  107. Beer SM, Taylor ER, Brown SE, et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 2004;279:47939-51. https://doi.org/10.1074/jbc.M408011200
  108. Hurd TR, Costa NJ, Dahm CC, et al. Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 2005;7:999-1010. https://doi.org/10.1089/ars.2005.7.999
  109. Hurd TR, Filipovska A, Costa NJ, Dahm CC, Murphy MP. Disulphide formation on mitochondrial protein thiols. Biochem Soc Trans 2005;33(Pt 6):1390-3.
  110. Chen YR, Chen CL, Pfeiffer DR, Zweier JL. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J Biol Chem 2007;282:32640-54. https://doi.org/10.1074/jbc.M702294200
  111. Hofer A, Wenz T. Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 2014;56:202-20. https://doi.org/10.1016/j.exger.2014.03.006
  112. Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH study. Circulation 2004;110:1061-8. https://doi.org/10.1161/01.CIR.0000140261.58966.A4
  113. Parang P, Singh B, Arora R. Metabolic modulators for chronic cardiac ischemia. J Cardiovasc Pharmacol Ther 2005;10:217-23. https://doi.org/10.1177/107424840501000402
  114. Morrison DA, Sethi G, Sacks J, et al. Percutaneous coronary intervention versus coronary artery bypass graft surgery for patients with medically refractory myocardial ischemia and risk factors for adverse outcomes with bypass: a multicenter, randomized trial. Investigators of the Department of Veterans Affairs Cooperative Study #385, the Angina With Extremely Serious Operative Mortality Evaluation (AWESOME). J Am Coll Cardiol 2001;38:143-9. https://doi.org/10.1016/S0735-1097(01)01366-3
  115. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36. https://doi.org/10.1161/01.CIR.74.5.1124
  116. Iliodromitis EK, Lazou A, Kremastinos DT. Ischemic preconditioning: protection against myocardial necrosis and apoptosis. Vasc Health Risk Manag 2007;3:629-37.
  117. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014;2:702-14. https://doi.org/10.1016/j.redox.2014.05.006
  118. Halestrap AP, Brenner C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 2003;10:1507-25. https://doi.org/10.2174/0929867033457278
  119. Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005;434:658-62. https://doi.org/10.1038/nature03434
  120. Javadov S, Karmazyn M, Escobales N. Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 2009;330:670-8. https://doi.org/10.1124/jpet.109.153213
  121. Smeele KM, Southworth R, Wu R, et al. Disruption of hexokinase IImitochondrial binding blocks ischemic preconditioning and causes rapid cardiac necrosis. Circ Res 2011;108:1165-9. https://doi.org/10.1161/CIRCRESAHA.111.244962
  122. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A 1992;89:3170-4. https://doi.org/10.1073/pnas.89.8.3170
  123. Onishi A, Miyamae M, Kaneda K, Kotani J, Figueredo VM. Direct evidence for inhibition of mitochondrial permeability transition pore opening by sevoflurane preconditioning in cardiomyocytes: comparison with cyclosporine A. Eur J Pharmacol 2012;675:40-6. https://doi.org/10.1016/j.ejphar.2011.11.040
  124. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977-86. https://doi.org/10.1056/NEJM199309303291401
  125. Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2015, [Epub ahead of print]
  126. Park KJ, Kim YJ, Kim J, et al. Protective effects of peroxiredoxin on hydrogen peroxide induced oxidative stress and apoptosis in cardiomyocytes. Korean Circ J 2012;42:23-32. https://doi.org/10.4070/kcj.2012.42.1.23
  127. Akhmedov D, De Marchi U, Wollheim CB, Wiederkehr A. Pyruvate dehydrogenase E1 ${\alpha}$ phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal ${\beta}$-cells. Biochim Biophys Acta 2012;1823:1815-24. https://doi.org/10.1016/j.bbamcr.2012.07.005
  128. Kolobova E, Tuganova A, Boulatnikov I, Popov KM. Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J 2001;358(Pt 1):69-77. https://doi.org/10.1042/bj3580069
  129. Churchill EN, Murriel CL, Chen CH, Mochly-Rosen D, Szweda LI. Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res 2005;97:78-85. https://doi.org/10.1161/01.RES.0000173896.32522.6e
  130. Li H, Ren Z, Kang X, et al. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells. BMC Cancer 2009;9:366. https://doi.org/10.1186/1471-2407-9-366
  131. Choudhary C, Olsen JV, Brandts C, et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 2009;36:326-39. https://doi.org/10.1016/j.molcel.2009.09.019
  132. Sharma K, D'Souza RC, Tyanova S, et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 2014;8:1583-94. https://doi.org/10.1016/j.celrep.2014.07.036
  133. Zhao X, Leon IR, Bak S, et al. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 2011;10:M110.000299. https://doi.org/10.1074/mcp.M110.000299
  134. Grimsrud PA, Carson JJ, Hebert AS, et al. A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 2012;16:672-83. https://doi.org/10.1016/j.cmet.2012.10.004
  135. Chen R, Fearnley IM, Peak-Chew SY, Walker JE. The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 2004;279:26036-45. https://doi.org/10.1074/jbc.M402710200
  136. Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 2003;21:532-8. https://doi.org/10.1038/nbt819
  137. Raha S, Myint AT, Johnstone L, Robinson BH. Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase. Free Radic Biol Med 2002;32:421-30. https://doi.org/10.1016/S0891-5849(01)00816-4
  138. Lee I, Salomon AR, Ficarro S, et al. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 2005;280:6094-100. https://doi.org/10.1074/jbc.M411335200
  139. Steenaart NA, Shore GC. Mitochondrial cytochrome c oxidase subunit IV is phosphorylated by an endogenous kinase. FEBS Lett 1997; 415:294-8. https://doi.org/10.1016/S0014-5793(97)01145-9
  140. Hojlund K, Wrzesinski K, Larsen PM, et al. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 2003;278:10436-42. https://doi.org/10.1074/jbc.M212881200
  141. Phillips D, Covian R, Aponte AM, et al. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload. Am J Physiol Regul Integr Comp Physiol 2012;302:R1034-48. https://doi.org/10.1152/ajpregu.00596.2011
  142. Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF. Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 2003; 278:27251-5. https://doi.org/10.1074/jbc.C300189200
  143. Bian Y, Song C, Cheng K, et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 2014;96:253-62. https://doi.org/10.1016/j.jprot.2013.11.014
  144. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 2011;4:rs5. https://doi.org/10.1126/scisignal.2001798
  145. Huttlin EL, Jedrychowski MP, Elias JE, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010;143:1174-89. https://doi.org/10.1016/j.cell.2010.12.001
  146. Feng J, Lucchinetti E, Enkavi G, et al. Tyrosine phosphorylation by Src within the cavity of the adenine nucleotide translocase 1 regulates ADP/ATP exchange in mitochondria. Am J Physiol Cell Physiol 2010;298:C740-8. https://doi.org/10.1152/ajpcell.00310.2009
  147. Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 2010;9:3280-9. https://doi.org/10.1021/pr1002214
  148. Xue L, Xu F, Meng L, et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanolinduced eNOS activation. FEBS Lett 2012;586:137-42. https://doi.org/10.1016/j.febslet.2011.11.031
  149. Lu Z, Bourdi M, Li JH, et al. SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity. EMBO Rep 2011;12:840-6. https://doi.org/10.1038/embor.2011.121
  150. Shinmura K, Tamaki K, Sano M, et al. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 2011;109: 396-406. https://doi.org/10.1161/CIRCRESAHA.111.243097
  151. Nguyen TT, Wong R, Menazza S, et al. Cyclophilin D modulates mitochondrial acetylome. Circ Res 2013;113:1308-19. https://doi.org/10.1161/CIRCRESAHA.113.301867
  152. Foster DB, Liu T, Rucker J, et al. The cardiac acetyl-lysine proteome. PLoS One 2013;8:e67513. https://doi.org/10.1371/journal.pone.0067513
  153. Grillon JM, Johnson KR, Kotlo K, Danziger RS. Non-histone lysine acetylated proteins in heart failure. Biochim Biophys Acta 2012; 1822:607-14. https://doi.org/10.1016/j.bbadis.2011.11.016
  154. Li T, Liu M, Feng X, et al. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem 2014;289:3775-85. https://doi.org/10.1074/jbc.M113.531640
  155. Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 2008;105:14447-52. https://doi.org/10.1073/pnas.0803790105
  156. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010;12:662-7. https://doi.org/10.1016/j.cmet.2010.11.015

Cited by

  1. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, w vol.80, pp.3, 2016, https://doi.org/10.1016/j.pnpbp.2017.04.022
  2. Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria vol.40, pp.None, 2016, https://doi.org/10.1016/j.mito.2017.09.003
  3. ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis vol.10, pp.11, 2018, https://doi.org/10.3390/v10110629
  4. A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases vol.1867, pp.1, 2021, https://doi.org/10.1016/j.bbadis.2020.165992
  5. Phosphorylation in Novel Mitochondrial Creatine Kinase Tyrosine Residues Render Cardioprotection against Hypoxia/Reoxygenation Injury vol.10, pp.2, 2021, https://doi.org/10.12997/jla.2021.10.2.223