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Abstract 
 

Compared to the classical cryptography, lattice-based cryptography is more secure, flexible 
and simple, and it is believed to be secure against quantum computers. In this paper, an 
efficient signature scheme is proposed from the ring learning with errors (R-LWE), which 
avoids sampling from discrete Gaussians and has the characteristics of the much simpler 
description etc. Then, the scheme is implemented in C/C++ and makes a comparison with the 
RSA signature scheme in detail. Additionally, a linearly homomorphic signature scheme 
without trapdoor is proposed from the R-LWE assumption. The security of the above two 
schemes are reducible to the worst-case hardness of shortest vectors on ideal lattices. The 
security analyses indicate the proposed schemes are unforgeable under chosen message attack 
model, and the efficiency analyses also show that the above schemes are much more efficient 
than other correlative signature schemes. 
 
 
Keywords: Signature, R-LWE, linearly homomorphic, lattice 

 
This work is supported by the National Natural Science Foundation of China (61171072) and the Science & 
Technology Plan Projects of Shenzhen (ZDSYS20140430164957660, JCYJ20150324141711562, 
JCYJ20150324141711665, JCYJ20150324140036830, 20160224144857159) 
 
http://dx.doi.org/10.3837/tiis.2016.08.026                                                                                                          ISSN : 1976-7277 



3912                                                                Wang et al.: Efficient Signature Schemes from R-LWE 

1. Introduction 

Digital signature is one of the most important and widely used cryptographic primitives. At 
present all signature schemes from classical cryptography were proved to be either insecure or 
function-limited especially under quantum attacks [1-3], so lattice-based cryptography has 
become a hot research topic because of its security. Since new trapdoors for hard lattices were 
developed successfully [4], many lattice-based signature schemes  have been proposed owing 
to the excellent algebraic characteristic, implementation simplicity, stronger security proofs of 
the lattice cryptography [5-7]. 

Homomorphic signature is intriguing because which has been proved to be well-suited to 
guarantee information security in message-operated scenario, such as network coding, sensor 
networks and cloud storage etc [1, 8-12]. Homomorphic signature can sign n-dimensional 
vectors 1, , lv v  from a message space   and outputs the signature iσ  of every vector iv . 
Given these signatures, the homomorphic property of signature scheme is that anyone can 
evaluate a signature on the vector 1( , , )lv f v v=   in  . 

Homomorphic signature schemes were first given by Micali and Rivest for undirected 
graphs [13]. Subsequently Johnson proposed the basic definitions of homomorphic signature 
scheme and showed that a variety of homomorphic signature schemes can be designed [14]. 
The signature scheme from [5] was the first linear homomorphic scheme that authenticated 
vectors from binary fields, and its security was based on a new lattice problem, which is named 
k SIS− . Based on the trapdoor functions with preimage sampling [4] and a homomorphic 
hash function family, WANG FengHe gave a linely homomorphic signature scheme over 
binary field [15]. Using ideal lattices, Boneh et al presented the first homomorphic signature 
scheme for polynomial functions [6], and then Catalano, Fiore and Warinschi provided an 
alternative to the homomorphic signature scheme of Boneh and Freeman [16]. All of the above 
homomorphic signature schemes have their corresponding advantages and application scenes, 
the more detailed descriptions are shown in Table 1. However, they tend to be inefficient for 
practical applications.  

 
Table 1. The properties of the current homomorphic signature schemes 

Scheme Techniques Assumption Limitations 

[5]  preimage sampling 
functions (PSF) k-SIS The construction is inefficient for basing on 

PSF and Bonsai primitives 

[6] The intersection method, 
PSF Ideal-SVP Not leak information for linear functions but 

is unknown for higher degree polynomials. 

[15] PSF, linear homomorphic 
hash function SIS The construction is based on PSF 

[16] Leveled multilinear maps, 
graded encodings APMDH Insecure under quantum attacks 

 
In order to resolve the efficiency problem, unlike GPV08 scheme that needs to generate a 

trapdoor and sample from discrete Gaussians, we give a more efficient signature scheme from 
the ring learning with errors (R-LWE) using the idea from Lyubashevsky [17]. Subsequently, 
based on the work of WANG FengHe, a more efficient linearly homomorphic signature 
scheme without trapdoor on signed data is presented in this paper. Because of the much more 
compact algebraic structure of the R-LWE problem, the efficiency of the proposed signature 
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schemes is improved greatly, and the analyses show that schemes are secure in adaptive 
chosen message attack model, assuming that it is hard for probabilistic polynomial-time even 
quantum adversary to resolve the shortest vector problem on ideal lattices. 

The remainder of this paper is arranged as follows. In Section 2, the preliminaries are 
introduced firstly, and then a general lattice-based signature scheme is given and discussed in 
detail in Section 3. In Section 4, the definition of homomorphic signature is expounded firstly. 
Secondly, we propose an efficient linearly homomorphic signature scheme from R-LWE 
assumption. Finally, the security and the efficiency are analyzed in this Section. The whole 
paper is concluded in Section 5. 

2. Preliminaries 

2.1 Lattices 
Lattice can be regarded as the set of discrete points with a regular structure in geometry, which 
can be described formally as follows. 

Definition 1. Suppose that 1, , n
nb b R∈  are linearly independent n -dimensional vectors, 

then the lattice can be defined as 

1
1

( ,..., ) | ,1
n

n i i i
i

L b b x b x Z i n
=

 
= ∈ ≤ ≤ 
 
∑                                      (1) 

 
Where 1, , nb b  is a basis of the lattice, and its rank is n . 

The standard worst-case approximation lattice problem GapSVPγ  is given in the decision 
version. 

Definition 2 (Shortest Vector Problem). Given a lattice basis B , d R∈ . If 1( ( ))L B dλ ≤ , it 
is a YES instance. If 1( ( )) ( )L B n dλ γ> ⋅ , it is a NO instance, where the parameter ( ) 1nγ ≥  is a 
approximation factor and 1( ( ))L Bλ  is the minimum distance of a lattice ( )L B . 

2.2 Learning with Errors over Rings (R-LWE) 

Let ( ) 1 [ ],nf x x Z x= + ∈  where 2 ( )kn k Z= ∈  is a security parameter, which makes ( )f x  
irreducible over the rational number field, [ ]/ ( )R Z x f x= < >  be the integer polynomial ring 
modulo ( )f x , and assume that 1mod 2q n=  is a large prime modulus ( bounded by poly( )n ), 

/ [ ]/ ( )q qR R q Z x f x= < >= < >  is the integer polynomial ring modulo ( )f x  and q . It is 
obvious that the elements of qR  are typically represented by integer polynomials of degree 
less than n , and its coefficients are chosen from {0,1, , 1}q − . 

In the integer polynomial ring qR , the R-LWE problem can be defined as follows [18]. For 
a uniformly random qs R∈ (secret key), define two distributions on q qR R× : (1) 

( , )a b a s e= × + q qR R∈ × , where a  is chosen uniformly at random from qR , and e  is an 
independent error term from the distribution Rχ ⊂ . (2) ( , )a c , where ,  qa c R←  are 
uniformly random. The R-LWE problem is to distinguish the two distributions described 
above with non-negligible advantage. In other words, if R-LWE is hard, then the independent 
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samples of ‘random noise equations’ ( , )a a s e× +  is pseudorandom, and all operations are 
performed in qR . 

Lyubashevsky, Peikert and Regev proved that the R-LWE problem is hard under the 
worst-case assumptions on ideal lattices [18] (see Theorem 1). 

Theorem 1. For a approximation factor 1γ ≥ ( bounded by a fixed poly( )n ), assume that it 
is hard for any polynomial-time even quantum algorithms to find an approximation of the 
shortest vector on ideal lattices. Then any poly( )n  independent samples ( , )i i ia a s e× +  from 
the R-LWE distribution ,s q qA R Rχ ⊂ ×  are pseudorandom. 

2.3 A Hash Function Family 

Lyubashevsky et al. [19] defined a hash function family ,qZ n  that maps n
qZ  to qZ . The 

function ,qZ nh∈  is indexed by a certain fixed vector 1( , , ) n
n qa a Za = ∈

. h  takes as input an 
element 1( , , ) n

n qb b Zb = ∈

, and the output is the dot product as 1 1, n na b a ba b< >= + + . It is 
denoted by ( ) ,hα βαβ  =< > . The hardness of the hash function is based on the approximate 
worst-case lattice problems, and the hash function is a collision resistant hash. 

,qZ n  is a linear hash function family. That is to say, for every , n
qZβ γ ∈ , qk Z∈  and 

,qZ nh Hα ∈ , the following two properties are satisfied:  

(i)   ( ) ( ) ( )h h hααα  β γ β γ+ = +                                                 (2) 
  (ii)  ( ) ( )h k khαα ββ =                                                               (3) 

3. Signature Scheme 

3.1 The Proposed Scheme 
First we give the probability distribution χ  which will be used in the following, and χ  is 
derived from a Gaussian. For any 0β > , the density function of a Gaussian distribution over 
the real domain is given by 2( ) 1 / exp( ( / ) )D x xβ β p β= ⋅ − . For an integer 2q ≥ , define 

( )qβψ to be the distribution on qZ  obtained by drawing y Dβ← and outputting 
1 / 2q y⋅ +   (mod q ). Let qRχ ⊂ denotes the set of polynomials whose coefficients are chosen 

from ( )qβψ . 
Unlike GPV08 scheme that needs to generate a trapdoor and sample from discrete 

Gaussians, using the idea from Lyubashevsky, an efficient signature scheme 
( , , )KeyGen Sign Verify=  from R-LWE problem can be constructed in Fig. 1. 

Let 2 ( )kn k Z= ∈ , a prime number 1mod(2 )p q n<< =  ( q  be a sufficiently large public 
prime modulus), qRχ ⊂ be the error distribution and [ ]/ 1n

q qR Z x x= < + > be the ring of 

integer polynomials modulo 1nx + and q . For a set R , $s R←  means that s  is chosen 
uniformly at random from R . 
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(1 )nKeyGen  ( , )Sign s m   {( , ), , ( )}Verify a b m cσ，  

Signing Key: $
ps R←  1: $

qt R←  1: Accept iff 
Verification Key:  2: ( mod , )c H a t p m= ⋅  qRσ ∈  and  

$
qa R← , 1b a s pe= ⋅ +   3: 2s c t pes = ⋅ + +  [( ) mod , ]c H a b c p mσ= ⋅ − ⋅  

Random Oracle: 4: output ( , )cσ  
*:{0,1} { 1,0,1}nH → −  

Fig. 1. The proposed signature sheme from R-LWE 
 

• (1 )nKeyGen : Choose ps R∈  randomly as the private key. The public key is 
( 1,a b a s pe= ⋅ + ), where a  is uniformly random chosen from qR  and error term 1e  is 
chosen independently from a probability distribution qRχ ⊂ .  

• ( , )Sign s m : To sign a message pm R∈ , pick a polynomial $
qt R← and compute 

( mod , )c H a t p m= ⋅  (view it as an element of qR  by using its coordinates as the 
coefficients of a polynomial). Output the signature 2( ,  )s c t pe cs = ⋅ + + , where 2e  is 
chosen independently from a probability distribution χ . 

• {( , ), , ( )}Verify a b m cσ， : If qRσ ∈  and [( ) mod , ]c H a b c p mσ= ⋅ − ⋅ , output 1. Else, 
output 0. 

Polynomial addition is the usual coordinate-wise addition, and multiplication is the usual 
polynomial multiplication followed by reduction modulo 1nx + . 

Claim 1. The signature scheme described above is correct. 
Proof. Consider a signature 2( ,  )s c t pe cs = ⋅ + +  of a message m  under the public key 

( 1,a b a s pe= ⋅ + ), as the verification process can be computed as 

2 1[ ]mod [ ( ) ( ) ]moda b c p a s c t pe a s pe c ps⋅ − ⋅ = ⋅ ⋅ + + − ⋅ + ⋅  

2 1[ ( )]mod moda t p a e e c p a t p= ⋅ + ⋅ − ⋅ = ⋅                     (4)  
So [( ) mod , ]c H a b c p mσ= ⋅ − ⋅  and we can conclude the signature scheme is correct. 

3.2 Security Analysis 
Claim 2. The scheme   described above is secure against chosen-plaintext attacks (CPA) in 
the random oracle model, assuming that the R-LWE is hard and hash function H  is secure. 

Proof. Assume there is a probabilistic polynomial-time (PPT) adversary   which can win 
the unforgeability game with probabilityε . We can construct a PPT challenger   to solve the 
R-LWE problem with probability close toε . Assume that   queries the random oracle H h  
times and the sign algorithm k  times. And queries H on every message ( 1,..., )im i h= before 
making a sign query. 

Let l h k= + be the bound of the query times on random oracle H during ’s  attack, pick 
1 2, , , lr r r  from { 1,0,1}n−  uniformly at random, which will correspond to the responses of the 
H . The challenger  takes as input 1 2( , , , , , )la b r r r  and runs   by giving it the public key  
( 1,a b a s pe= ⋅ + ). When   makes queries to the H , the reply will be the first ir  in the list 

1 2( , , , )lr r r  that has not been used. When   makes sign queries,  programs the random 
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oracle output so that the signatures are valid even though   don’t know the signing key, and 
the responses of the H is first unused ir  in the list 1 2( , , , )lr r r , if the same query is made 
again, it will respond with the previous answer ir . When   finishes the queries and outputs a 
forgery sucessfully with probability ε ,  outputs the same output. 

Suppose   outputs a message m  and its signature ( , )cσ  such that qRσ ∈  and 
[( ) mod , ]c H a b c p mσ= ⋅ − ⋅ . If H was not queried or pragrammed on ( ) moda b c pσ⋅ − ⋅ , 

then the probability that   produces a c  such that [( ) mod , ]c H a b c p mσ= ⋅ − ⋅  is 3 n− , hence 
c  is one of the ir  from 1 2( , , , )lr r r  with probability 1- 3 n− . Assume j  is such that jc r= , 
which was a responses to the oracle query H  made by  . From the “forking lemma” of 
Pointcheval and Stern [20], we can produce two different signatures of the message m , 
( , )cσ and ' '( , )cσ  with the probability ε - 3 n− , such that 

' '[( ) mod , ] [( ) mod , ]H a b c p m H a b c p mσ σ⋅ − ⋅ = ⋅ − ⋅  
which means that ' '( ) ( ) moda b c a b c pσ σ⋅ − ⋅ = ⋅ − ⋅ , as 1b a s pe= ⋅ + , we can obtain 

' '( ) 0a sc scss − − + = , so ' '( ) ( ) 0s c css − − − = , namely ' '( ) ( )s c css − = − , then  can 
obtain the private key s  with the probability ε - 3 n−  by multiplying ' 1( )c c −− , So R-LWE 
problem is solved successfully. 

3.3 Efficiency Analysis 
Because of the special algebraic structure of R-LWE, the signature scheme from the R-LWE 
problem has the advantages of much simpler description, analysis and very high efficiency. 
The efficiency analysis of the scheme is shown in Table 2. 

In the following parts, the scheme from R-LWE is compared with the RSA scheme on the 
same parametric conditions and operation environment. We use the same usual personal 
computer to evaluate the implementation performance of the two schemes: Running them on a 
Microsoft Windows XP Professional 2002 System, featuring a Pentium (R) D CPU processor, 
running at 3.0GHz, with 1.0GB of RAM. The implementation uses Shoup's NTL library 
version 5.5.2 for high-level numeric algorithms, and the code is compiled using Microsoft 
Visual C++ 6.0 compiler. 

 
Table 2. Efficiency analysis of the scheme from R-LWE 

Private key size Public key size Message length Signature length Verification 
computation 

logn p  2 logn q  logn p  2 logn q  
2( )O n  

 
Table 3. Implementation time of the scheme from R-LWE 

Security 
parameter n  KeyGen (ms) Signature(ms) Verification (ms) Total Time(ms) 

128 14.6 30.6 28.7 73.9 
256 37.0 69.2 68.4 174.6 
512 121.8 243.6 240.4 605.8 

1024 443.8 880.8 909.2 2233.8 
2048 1687.2 3399.6 3531.2 8618 
4096 6578.1 13371.8 13252.7 33202.6 
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Table 4. Implementation time of the RSA scheme 

 
Table 3 and Table 4 show the simulation results of the two different schemes respectively. 

Each test is repeated ten times and the datum shown in the two tables are the means of these ten 
different repetitions. As can be seen from Table 3 and Table 4, the runtime of the scheme 
from R-LWE is more efficient than the RSA scheme under the same conditions, especially the 
key generation time and signature time. Regardless of the inefficiency of the verification 
compared to RSA scheme, the total runtime of our scheme is much more efficient than that of 
the RSA scheme with the increase of security parameter n .  

Modulus q  takes the minimum integer satisfying corresponding conditions in the two 
schemes, and the length of messages encrypted in the two scheme is logn q bit. 

More detailed simulation results of the two above-described schemes are shown in Fig. 2 to 
Fig. 5. And Fig. 2, Fig. 3 and Fig. 4 indicate the efficiency of the key generation, signature and 
verification in the two schemes respectively, and the comparison of the total implementation 
time of the two schemes is shown in Fig. 5. At the same time, the figures also show the change 
tendencies of the implementation time of the two encryption schemes along with the change of 
the security parameter n .  

As can be seen from Fig. 2 to Fig. 5, the efficiency of the scheme from R-LWE is more 
eximious than the RSA signature scheme, and the increasing tendency of the scheme from 
R-LWE in runtime is much slower than that of the RSA scheme with the increase of security 
parameter n . Furthermore, the scheme from R-LWE is believed to be secure against quantum 
computers. 
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Fig. 2. Efficiency comparison of key generation between our signature scheme and RSA scheme. 

Security parameter 128,256,512,1024,2048,4096n =  

Security 
parameter n  KeyGen (ms) Signature(ms) Verification (ms) Total Time(ms) 

128 14.0 10.1 5.8 29.9 
256 1028.4 120.8 6.9 1156.1 
512 2017.3 279.1 7.1 2303.5 

1024 5973.7 2232.5 15.2 8221.4 
2048 31249.6 9539.7 47.7 40837 
4096 217288.3 121170.0 172.0 338630.3 
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Fig. 3. Efficiency comparison of signature between our signature scheme and RSA scheme. Security 

parameter 128,256,512,1024,2048,4096n =  
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Fig. 4. Efficiency comparison of verification between our signature scheme and RSA scheme. Security 

parameter 128,256,512,1024,2048,4096n =  

4. Linearly Homomorphic Signature Scheme 

4.1. Scheme 
Definition 3. A homomorphic signature scheme is composed of four probabilistic 
polynomial-time (PPT) algorithms ( , , , )Setup Sign Evaluate Verify  such that: 

• (1 ,1 )n lSetup : Take as input a security parameter n  and the maximum evaluation data set 
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size l . Algorithm outputs the private key sk  and the public key pk . 
• ( , , )iSign sk mτ : Take as input a tag *{0,1}τ ∈ , the private key sk  and a message 

( {1, })im i l∈ 
 in some message space  . Algorithm outputs a signature iσ ∈Σ , where 

Σ  is a signature space. 
• 1( , ,{ , , }, )lEvaluate pkt σ σ g : Take as input a tag τ , a public key pk , a tuple of 

signatures ( 1, , )i i lσ ∈Σ = 
, and a multivariate function ∈g . Outputs a signature 

1( , , )lσ σ σ= g .  
• 1( , ,{ , , }, , )lVerify pk m mτ σ g : Take as input a tag τ , a public key pk , a tuple of messages 

( 1, )im i l∈ =  , a function g  and a signature σ . Algorithm outputs either 0 or 1. 
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Fig. 5. Comparison of total implementation time between our signature scheme and RSA scheme. 

Security parameter 128,256,512,1024,2048,4096n =  
 
It is required that for any ( , ) (1 ,1 )n lpk sk Setup← , the following hold: 

1) In fact, for any tag *{0,1}τ ∈ and any message 'm ∈ , if ' ( , , ')Sign sk ms τ← , then 
( , , ', ') 1Verify pk mτ σ = . 

2)  For any tag *{0,1}τ ∈ , all sets 1{( , )}l
i i im σ =  and all functions ∈g , if 

( , , , ) 1i iVerify pk mτ σ =  for all i , then 

1 1( , , ( , , ), ( , ,{ , , }, )) 1l lVerify pk m m Evaluate pktt  σ σ = g g  
The homomorphic signature scheme described above is defined as  -homomorphic. 

Especially, if   is composed of all integer linear functions, we say that the scheme is a 
linearly homomorphic signature scheme. 

Now we begin to describe the linearly homomorphic signature scheme proposed in this 
paper, and Fig. 6 provides an overview of the scheme.  

For any positive parameter 0δ > , the Gaussian function with center 0 over the real domain 
is given by 2( ) 1 / exp( ( / ) )D x xδ δ p δ= ⋅ − . On an integer 2q ≥ , define ( )qδψ to be the 
distribution over qZ  obtained by choosing y Dδ← and outputting 1 / 2q y⋅ +   (mod q ). Let 
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the error distribution qRχ ⊂ denotes the set of polynomials whose coefficients are chosen 

from ( )qδψ , [ ]/ 1n
q qR Z x x= < + > be the integer polynomial ring modulo ( )f x  and q , and 

*:{0,1} n
qH Z→  is a random oracle that maps *{0,1}  to n

qZ . 
Using a homomorphic hash function family [18], an efficient linearly homomorphic 

signature scheme ( , , , )Setup Sign Evaluate Verify=  without trapdoor from R-LWE 
assumption is constructed as follows: 
 

(1 ,1 )n lSetup      

private Key: $
ps R← , public key: $

qa R← , 
*b a s pe= ⋅ + , *:{0,1} n

qH Z→    

( , , )iSign s mτ  1( , ,{( , , )} )l
i i i iEvaluate pk k vt σ =   { , ( , ), , ( , )}Verify a b m vτ σ   

1: For 1, ,j n=                               Given a tag τ , ( , )a b  and 1: ( || )( 1, , )j H j j nα τ= =   

compute ( || , )j H j tαt =  1{( , , )}l
i i i ik vσ = ( )i pk Z∈

 
2: ( , , )m i ih h h=   

2: 
1

( , , )
i nm i ih h h=    Outputs

1 1
( , )l l

i i i ii i
k k vσ

= =∑ ∑  1( , , , , )nm mαα = < > < >  

1( , , , , )i i nm mαα = < > < >       3: If , qv Rσ ∈  and 

3: $ , ( )
ii q i m i iv R s h v pes← = + +

 
(mod )ma b v b h pσ⋅ − ⋅ = ⋅  

4: output ( , )i ivσ  output 1. Else, output 0 

Fig. 6. The signature scheme   from R-LWE 
 

• (1 ,1 )n lSetup : Given the security parameter 2 ( )kn k Z= ∈ , the maximum data set size l  
and a prime number 1mod(2 )p q n<< = ( q  is a large prime modulus). Choose ps R∈  

randomly as the private key. The public key is *( , )a b a s pe= ⋅ + , where a  is chosen 
uniformly at random from qR  and error term and *e  is chosen independently from a 
probability distribution qRχ ⊂ . 

• ( , , )iSign s mτ : Given a tag τ  and a private key s , to sign a message ( {1, })i pm R i l∈ ∈  , 
the signer performs the following operations:  

1) For 1, ,j n=  , compute ( || )j H jα τ= . 
2) 

1 1( , , ) ( , , , , )
i nm i i i i nh h h m mαα = = < > < >  . 

3) $ , ( )
ii q i m i iv R s h v pes← = + + . 

where ie  is chosen independently from a probability distribution χ . Output the signature 
( , , , )i i im vτ σ .  
• 1( , ( , ),{( , , )} )l

i i i iEvaluate a b k vt σ = : Given a tag τ , a public key ( , )a b  along with a tuple of 

1{( , , )}l
i i i ik vσ =  ( )i pk Z∈ . Outputs 

1 1
( , )l l

i i i ii i
k k vσ

= =∑ ∑ . 
• { ,( , ), , ( , )}Verify a b m vτ σ : Given a tag τ , a public key ( , )a b , a message m∈  and a 

signature σ , do the following: 
1) ( || )( 1, , )j H j j nα τ= =  . 
2) 1( , , ) ( , , , , )m i i nh h h m mαα = = < > < >  . 
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3) If qRσ ∈  and (mod )ma b v b h pσ⋅ − ⋅ = ⋅ , output 1. Else, output 0. 
The scheme described above is correct, in fact: 

*[ ]mod { [ ( ) ] ( )( )}modm m ma bv b h p a s h v pe a s pe v h ps⋅ − − ⋅ = ⋅ ⋅ + + − ⋅ + +  
 [ ( )]mod 0mp a e e v e h p∗ ∗= ⋅ − − =                                        (6) 

 
Claim 3. The polynomial ring signature scheme over pR  described above is linearly 

homomorphic. 
Proof. Given messages im such that { , ( , ), , ( , )} 1i i iVerify a b m vτ σ =  for all i . As all 

operations are performed in qR , the signature 
1 1

( , )l l
i i i ii i

k k vσ
= =∑ ∑ output by 

1( , ( , ),{( , , )} )l
i i i iEvaluate a b k vt σ =  satisfies the condition , qv Rσ ∈ . On the other hand, as 

*

1 1 1 1 1 1
[ ( ) ( ) ( )] [ ( ) ] ( ) ( )

i i i

l l l l l l

i i i i i m i m i i i i i m
i i i i i i

a k b k v b k h a k s h v pe a s pe k v k hs
= = = = = =

 
⋅ − ⋅ − ⋅ = ⋅ ⋅ + + − ⋅ + ⋅ + 

 
∑ ∑ ∑ ∑ ∑ ∑

*
1 1

1 1
{ [( , ,..., , ) ] } ( ) [( , ,..., , ) ]

l l

i i i n i i i i i n i
i i

a k s m m v pe a s pe k m m va a a a
= =

= ⋅ ⋅ < > < > + + − ⋅ + ⋅ < > < > +∑ ∑

*
1

1 1
[( , ,..., , ) ] 0mod

l l

i i i i i n i
i i

p a k e e k m m v pa a
= =

 
= ⋅ − ⋅ < > < > + = 

 
∑ ∑                                        (7) 

     
Hence the conclusion is correct. 

4.2. Security Analysis 
A homomorphic signature scheme ( , , , )Setup Sign Evaluate Verify=  is unforgeable under 
chosen-message attack, if for all probabilistic polynomial-time adversary (PPT)  , the 
success probability of   in the following game is negligible in the security parameter n . 

• Setup : Challenger runs (1 ,1 )n lSetup to get *{ , ( , )}s a b a s pe= ⋅ + , and sends public 
key ( , )a b to  . 

• Queries :   makes queries on a sequence of messages i pm R∈ ( 1, , )i Q=  , the 
challenger gives the hash 

imh  and the signatures iσ  to  . 

• Output :   outputs a tuple of the tag, message and signature * * *{ , , }mτ σ . 
The adversary succeeds if * * *( , ( , ), , ) 1Verify a b mτ σ =  but * ( 1, , )im m i Q≠ = 

.  
Claim 4. For any parameters n , q  and polynomial ( )f x  satisfying the condition of the 

R-LWE problem, the signature scheme   is unforgeable in the chosen message attack model 
(CMA), assuming that the R-LWE problem is hard. 

Proof. The proof is similar to that of the Claim 2 except that the random oracle query. 
Assume there is a probabilistic polynomial-time (PPT) adversary   which can win the 
unforgeability game with probabilityε . We can construct a PPT challenger   to solve the 
R-LWE problem with probability close toε . Assume that   queries the sign algorithm k  
times. Then   runs   by giving it the public key *( , )a b a s pe= ⋅ + . 

When   makes sign queries,  programs the random oracle output so that the signatures 
are valid even though   don’t know the signing key. When   finishes the queries and 
outputs a forgery sucessfully with probability ε ,  outputs the same output. 
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Suppose   outputs a message m  and its signature ( , )vσ  such that , qv Rσ ∈  and 
(mod )ma b v b h pσ⋅ − ⋅ = ⋅ . If H was not queried or pragrammed on ( ) moda b v pσ⋅ − ⋅ , then 

the probability that   produces a mc b h= ⋅  such that (mod )ma b v b h pσ⋅ − ⋅ = ⋅  is nq− , From 
the “forking lemma” of Pointcheval and Stern [20], we can produce two different signatures of 
the message m , ( , )vσ and ' '( , )vσ  with the probability ε - nq− , such that 

' ' moda b v a b v pσ σ⋅ − ⋅ = ⋅ − ⋅  
as *b a s pe= ⋅ + , we can obtain ' '( ) 0a sv svss − − + = , so ' '( ) ( ) 0s v vss − − − = , namely 
' '( ) ( )s v vss − = − , then  can obtain the private key s  with the probability ε - nq−  by 

multiplying ' 1( )v v −− , So R-LWE problem is solved successfully. 

4.3. Efficiency Analysis 
Because of the special algebraic structure of R-LWE, the linearly homomorphic signature 
scheme from R-LWE problem has the advantages of much simpler description, analysis and 
very high efficiency. Compared with the signatures scheme of [5, 15], the efficiency 
improvement of our scheme is shown in Table 5.  

In the scheme of Boneh, 6 lg 2 1m n q= +   . psf  and bt  denote the computational cost of 
running preimage sampling functions (PSF) [4] and ExtBasis algorithm [21] respectively. The 
scheme of Boneh needs to use the ExtBasis algorithm and PSF to sign messages, and the PSF 
is a sub-algorithm of the ExtBasis algorithm. As the PSF algorithm is rather inefficient, whose 
time complexity is 3( )nΩ , the operations for signature of the scheme of Boneh is more 
than 32 2 ( )psf n≥ Ω . The data in Table 5 indicates that the scheme from R-LWE is more 
efficient than other correlative sign schemes, especially its public key, private key and 
operations for signature are incomparable to the scheme based on the PSF algorithm. 

 
Table 5.  Efficiency comparison. 

5. Conclusion 
Digital signature can solve many security issues from internal and external malicious attacks 
in network coding, sensor networks and cloud storage etc. In order to guarantee the security of 
the network data, owing to the flexible structure and implementation simplicity of lattice 
cryptography, two efficient digital signature schemes from R-LWE assumption are proposed, 
and the analyses show that they are unforgeable in the chosen message attack model. The 
schemes mainly use modular addition and modular multiplication operations of the ring of 
integer polynomials, especially based on the special algebraic structure of R-LWE assumption, 
hence they are more efficient than previous interrelated signature schemes using ExtBasis or 
PSF algorithm. In the future, we will explore the fully homomorphic signature from lattice. 

cryptosystem Private key size Public key 
size 

Signature 
length Signature cost Verification 

cost 
[5] ( )(1 log )m m n q+ +  (1 log )mn q+  2 (1 log )m q+  1 1psf bt+  ( )O nm  

[15] 2 logm q  logmn q  logm q n+  1 (m 1)psf n+ +  ( )O nm

 
[17] logmk q  ( ) logn m k q+  ( ) logm k q+  [ ( )]O m n k+

 [ ( 1)]O n m k+ +

 
Our scheme logn q  2 logn q  logn q  

2( )O n  
2( )O n  
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