References
- Abbas I.A. (2015), "Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source", J. Mag. Mag. Mat., 377(3), 452-459. https://doi.org/10.1016/j.jmmm.2014.10.159
- Adolfsson, K., Enelund, M. and Olsson, P. (2005), "On the fractional order model of visco- elasticity", Mech. Time-Depend. Mat., 9(1), 15-34. https://doi.org/10.1007/s11043-005-3442-1
- Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27 (3), 240-253. https://doi.org/10.1063/1.1722351
- Caputo, M. (1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acoust. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344
- Cattaneo, C. (1958), "Sur une forme de l'equation de la Chaleur eliminant le paradoxe d'une propagation instantaneee", C.R. Acad. Sci. Paris, 247 (3), 431-433.
- Chadwick, P. (1960), Thermoelasticity-The Dynamic Theory, (Eds. R. Hill and I.N. Sneddon), Progress in Solid Mechanics, 1, North-Holland Publishers, Amsterdam, 236.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity, A review of recent literature", Appl. Mech. Rev., 51 (12), 705-729. https://doi.org/10.1115/1.3098984
- Choudhuri, S. (1984), "Electro-magneto-thermo-elastic waves in rotating media with thermal relaxation", Int. J. Eng. Sci., 22(5), 519-530. https://doi.org/10.1016/0020-7225(84)90054-5
- Dreyer, W. and Struchtrup, H. (1993), "Heat pulse experiments revisited", Continuum. Mech. Therm., 5(1), 3-50. https://doi.org/10.1007/BF01135371
- Duhamel, J.H. (1937), "Second memoir sur les phenomenes thermomechanique", J. de L' Ecole Polytechnique, 15(25), 1-57.
- El-Karamany, A.S. and Ezzat, M.A. (2002), "On the boundary integral formulation of thermo-viscoelasticity theory", Int. J. Eng. Sci., 40(17), 1943-1956. https://doi.org/10.1016/S0020-7225(02)00043-5
- El-Karamany, A.S. and Ezzat, M.A. (2004a), "Discontinuities in generalized thermo- viscoelasticity under four theories", J. Therm. Stress., 27(12), 1187-1212. https://doi.org/10.1080/014957390523598
- El-Karamany, A.S. and Ezzat, M.A. (2004b), "Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times", Appl. Math. Comput., 151(2), 347-362. https://doi.org/10.1016/S0096-3003(03)00345-X
- El-Karamany, A.S. and Ezzat, M.A. (2004c), "Thermal shock problem in generalized thermo-viscoelasticity under four theories", Int. J. Eng. Sci., 42 (7), 649-671. https://doi.org/10.1016/j.ijengsci.2003.07.009
- El-Karamany, A.S. and Ezzat, M.A. (2005), "Propagation of discontinuities in thermopiezoelectric rod", J. Therm. Stress., 28 (10), 997-1030. https://doi.org/10.1080/01495730590964954
- El-Karamany, A.S. and Ezzat, M.A. (2009), "Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times", Mech. Time-Depend. Mater., 13(1), 93-115. https://doi.org/10.1007/s11043-008-9068-3
- El-Karamany, A.S. and Ezzat, M.A. (2011a), "On fractional thermoelastisity", Math. Mech. Solids, 16(3), 334-346. https://doi.org/10.1177/1081286510397228
- El-Karamany, A.S. and Ezzat, M.A. (2011b), "Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity", J. Therm. Stress., 34(3), 264-284. https://doi.org/10.1080/01495739.2010.545741
- El-Karamany, A.S. and Ezzat, M.A. (2014), "On the dual-phase-lag thermoelasticity theory", Mecc., 49(1), 79-89. https://doi.org/10.1007/s11012-013-9774-z
- Ezzat, M.A. (1997), "State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity", Int. J. Eng. Sci., 35(8), 741-752. https://doi.org/10.1016/S0020-7225(96)00112-7
- Ezzat, M.A. (2001), "Free convection effects on perfectly conducting fluid", Int. J. Eng. Sci., 39 (7), 799-819. https://doi.org/10.1016/S0020-7225(00)00059-8
- Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mat. Sci. Eng. B, 130(1-3), 11-23. https://doi.org/10.1016/j.mseb.2006.01.020
- Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Phys. B, 405 (19), 4188-4194. https://doi.org/10.1016/j.physb.2010.07.009
- Ezzat, M.A. (2011a), "Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer", Phys. B, 406 (1), 30-35. https://doi.org/10.1016/j.physb.2010.10.005
- Ezzat, M.A. (2011b), "Theory of fractional order in generalized thermoelectric MHD", Appl. Math. Model., 35(10), 4965-4978. https://doi.org/10.1016/j.apm.2011.04.004
- Ezzat, M.A. (2011c), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50(4), 449-455. https://doi.org/10.1016/j.ijthermalsci.2010.11.005
- Ezzat, M.A. (2012), "State space approach to thermoelectric fluid with fractional order heat transfer", Heat Mass Transf., 48(1), 71-82. https://doi.org/10.1007/s00231-011-0830-8
- Ezzat, M.A. and Abd Elaal, M.Z. (1997), "Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium", J. Frank. Ins., 334(4), 685-706. https://doi.org/10.1016/S0016-0032(96)00095-6
- Ezzat, M.A. and Awad, E.S. (2010), "Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures", J. Therm. Stress., 33(3), 226-250. https://doi.org/10.1080/01495730903542829
- Ezzat, M.A. and El-Bary, A.A. (2012), "MHD free convection flow with fractional heat conduction law", MHD, 48(4), 587-606.
- Ezzat, M.A. and El-Karamany, A.S. (2002a), "The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media", J. Therm. Stress., 25(6), 507-522. https://doi.org/10.1080/01495730290074261
- Ezzat, M.A. and El-Karamany, A.S. (2002b), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1275-1284. https://doi.org/10.1016/S0020-7225(01)00099-4
- Ezzat, M.A. and El-Karamany, A.S. (2003a), "On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation", Canad. J. Phys., 81(6), 823-833. https://doi.org/10.1139/p03-070
- Ezzat, M.A. and El-Karamany, A.S. (2003b), "Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity", Appl. Math. Comput., 142 (2-3), 449-467. https://doi.org/10.1016/S0096-3003(02)00313-2
- Ezzat, M.A. and El-Karamany, A.S. (2006), "Propagation of discontinuities in magneto-thermoelastic half-space", J. Therm. Stress., 29(4), 331-358. https://doi.org/10.1080/01495730500360526
- Ezzat, M.A. and El-Karamany, A.S. (2011a), "Fractional order theory of a perfect conducting thermoelastic medium", Canad. J. Phys., 89(3), 311-318. https://doi.org/10.1139/P11-022
- Ezzat, M.A. and El-Karamany, A.S. (2011b), "Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures", ZAMP, 62(5), 937- 952. https://doi.org/10.1007/s00033-011-0126-3
- Ezzat, M.A. and El-Karamany, A.S. (2011c), "Theory of fractional order in electro-thermoelasticity", Eur. J. Mech. A- Solid, 30(4), 491-500. https://doi.org/10.1016/j.euromechsol.2011.02.004
- Ezzat, M.A. and El-Karamany, A.S. (2012), "Fractional thermoelectric viscoelastic materials", J. Appl. Poly. Sci., 72(3), 2187-2199.
- Ezzat, M.A. and Othman, M.I. (2002), "State space approach to generalized magnetothermoelasticity with thermal relaxation in a medium of perfect conductivity", J. Therm. Stress., 25(5), 409-429. https://doi.org/10.1080/01495730252890168
- Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Canad. J. Phys., 88(1), 35-48. https://doi.org/10.1139/P09-100
- Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer", Nucl. Eng. Des., 252(11), 267- 277. https://doi.org/10.1016/j.nucengdes.2012.06.012
- Ezzat, M.A., El-Karamany, A.S., Zakaria, M.A. and Samaan, A.A. (2003), "The relaxation effects of the volume properties of viscoelastic material in generalized thermoelasticity with thermal relaxation", J. Therm. Stress., 26 (7), 671-690. https://doi.org/10.1080/713855997
- Ezzat, M.A., El-Karamany, S.A. and Smaan, A.A. (2004), "The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation", Appl. Math. Comput., 147 (1), 169-189. https://doi.org/10.1016/S0096-3003(02)00660-4
- Ezzat, M.A., Othman, M.I. and El-Karamany, A.S. (2002), "State space approach to two-dimensional generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1251-1274. https://doi.org/10.1016/S0020-7225(02)00012-5
- Ezzat, M.A., Othman, M.I. and Helmy, K.A. (1999), "A problem of a micropolar magnetohydrodynamic boundary-layer flow", Canad. J. Phys., 77(10), 813-827. https://doi.org/10.1139/y99-083
- Glass, D.E. and Vick, B. (1985), "Hyperbolic heat conduction with surface radiation", Int. J. Heat Mass Transf., 28(10), 1823-1830. https://doi.org/10.1016/0017-9310(85)90204-2
- Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Hamza, F., Abdou, M. and Abd El-Latief, A.M. (2014), "Generalized fractional thermoelasticity associated with two relaxation times", J. Therm. Stress., 37 (9), 1080-1093. https://doi.org/10.1080/01495739.2014.936196
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal stresses, advanced theory and Applications, New York (NY): Springer.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Horgan, C.O. and Quintanilla, R. (2005), "Spatial behaviour of solutions of the dual-phase-lag heat equation", Math. Meth. Appl. Sci., 28 (1), 43-57. https://doi.org/10.1002/mma.548
- Ignaczak, J. (1989), Generalized thermoelasticity and its applications, (Ed., Hetnarski, R.B.), Thermal Stresses III. Elsevier, New York.
- Ignaczak, J. and Ostoja-starzeweski, M. (2009), Thermoelasticity with finite wave speeds, Oxford University Press, Oxford, UK.
- Joseph, D.D. and Preziosi, L. (1989), "Heat waves", Rev. Mod. Phys., 61(1), 41-73. https://doi.org/10.1103/RevModPhys.61.41
- Joseph, D.D. and Preziosi, L. (1990), "Addendum to the paper: Heat waves", Rev. Mod. Phys., 62(2), 375-391. https://doi.org/10.1103/RevModPhys.62.375
- Jou, D. and Criado-Sancho, M. (1998), "Thermodynamic stability and temperature overshooting in dual-phase-lag heat transfer", Phys. Lett. A, 248(2-4), 172-178. https://doi.org/10.1016/S0375-9601(98)00573-8
- Kaliski, S. and Petykiewicz, J. (1959), "Equations of motion coupled with the field of temperatures in a magnetic field involving mechanical and electromagnetic relaxation for anisotropic bodies", Proc. of Vib. Prob., 4(3), 83- 101.
- Knopoff, L. (1955), "The interaction between elastic wave motion and a magnetic field in electrical conductors", J. Geophys. Res., 60 (4), 441-456. https://doi.org/10.1029/JZ060i004p00441
- Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Nayfeh, A. and Nemat-Nasser, S. (1973), "Electromagneto-thermoelastic plane waves in solids with thermal relaxation", J. Appl. Mech. Ser. E, 39(1), 108-113.
- Nowinski, J.L. (1978), Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff International, Alphen Aan Den Rijn.
- Ogata, K. (1967), State space analysis control system, Prentice-Hall, Englewood Cliffs, N.J. Chap. 6.
- Othman, M.I., Ezzat, M.A., Zaki, S.A. and El-Karamany, A.S. (2002), "Generalized thermo-viscoelastic plane waves with two relaxation times", Int. J. Eng. Sci., 40(12), 1329-1347. https://doi.org/10.1016/S0020-7225(02)00023-X
- Quintanilla, R. and Racke, R. (2006), "A note on stability in dual-phase-lag heat conduction", Int. J. Heat Mass Transf., 49 (7-8), 1209-1213. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016
- Shereif, H.H. (1992), "Fundamental solution for thermoelasticity with two relaxation times", Int. J. Eng. Sci., 30(7), 861-870. https://doi.org/10.1016/0020-7225(92)90015-9
- Sherief, H.H. (1986), "Fundamental solution of generalized thermoelastic problem for short times", J. Therm. Stress., 9(2), 151-164. https://doi.org/10.1080/01495738608961894
- Sherief, H.H. and Ezzat, M.A. (1998), "A Problem in generalized magneto-thermoelasticity for an infinitely long annular cylinder", J. Eng. Math., 34 (1-4), 387-402. https://doi.org/10.1023/A:1004376014083
- Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
- Suhubi, E. (1975), Thermoelastic Solids, (Ed., A.C. Eringen), Cont. Phys., vol. II, Academic Press, New York, Chapter 21.
- Truesdell, C. and Muncaster, R.G. (1980), Fundamental of Maxwell's kinetic theory of a simple monatomic gas, Acad Press, NewYork.
- Tzou, D.Y. (1995), "A unified filed approach for heat conduction from macro to macroscales", J. Heat Transf. ASME, 117(1), 8-16. https://doi.org/10.1115/1.2822329
- Zencour, A.M. and Abbas, I.A. (2015), "Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation", J. Mag. Mag. Mat., 395 (12), 123-129. https://doi.org/10.1016/j.jmmm.2015.07.038
Cited by
- Fractional order theory to an infinite thermo-viscoelastic body with a cylindrical cavity in the presence of an axial uniform magnetic field vol.31, pp.5, 2017, https://doi.org/10.1080/09205071.2017.1285728
- Two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat transfer vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3425-6
- Thermoelectric viscoelastic materials with memory-dependent derivative vol.19, pp.5, 2016, https://doi.org/10.12989/sss.2017.19.5.539
- Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories vol.24, pp.3, 2017, https://doi.org/10.12989/scs.2017.24.3.297
- Rayleigh waves in anisotropic magnetothermoelastic medium vol.6, pp.3, 2016, https://doi.org/10.12989/csm.2017.6.3.317
- Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat vol.20, pp.4, 2016, https://doi.org/10.12989/sss.2017.20.4.451
- Causes of uncertainty in thermoelasticity measurements of structural elements vol.20, pp.5, 2016, https://doi.org/10.12989/sss.2017.20.5.539
- Dynamic model of fractional thermoelasticity due to ramp-type heating with two relaxation times vol.44, pp.11, 2019, https://doi.org/10.1007/s12046-019-1197-7
- Analysis of Time-Fractional Heat Transfer and its Thermal Deflection in a Circular Plate by a Moving Heat Source vol.25, pp.3, 2020, https://doi.org/10.2478/ijame-2020-0040
- Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.447
- Thermoelastic response of a nonhomogeneous elliptic plate in the framework of fractional order theory vol.91, pp.7, 2016, https://doi.org/10.1007/s00419-021-01962-w