Acknowledgement
Supported by : SYSWIND
References
- Arrigan, J., Huang, C., Staino, A., Basu, B. and Nagarajaiah, S. (2014), "A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades", Smart Struct. Syst., 13(2), 177-201, DOI: 10.12989/sss.2014.13.2.177.
- Arrigan, J., Pakrashi, V., Basu, B. and Nagarajaiah, S. (2011), "Control of flapwise vibration in wind turbine blades using semi-active tuned mass dampers", Struct. Control Health Monit., 18(8), 840-851, DOI: 1002/stc.404. https://doi.org/10.1002/stc.404
- Basu, B., Staino, A. and Dinh, V.N. (2012), "Vibration of wind turbines under seismic excitations", Proceedings of The 5th Asian-Pacific Symposium on Structural Reliability and its Applications, Singapore , 439-444, DOI: 10.3850/978-981-07-2219-7_P403.
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31, 358-368, DOI:10.1016/j.engstruct.2008.09.001.
- Dinh, V.N. and Basu, B. (2012), "Zero-pad effects on conditional simulation and application of spatially-varying earthquake motions", Proceedings of The 6th European Workshop on Structural Health Monitoring, Dresden, Germany, 893-899. URL: www.ndt.net/article/ewshm2012/papers/tu3d3.pdf
- Dinh, V.N. and Basu, B. (2013), "On the modelling of spar-type floating offshore wind turbines", Key Eng. Mater., 569-570, 536-543, DOI:10.4028/www.scientific.net/KEM.569-570.636.
- Dinh, V.N. and Basu, B. (2015), "Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass damper", Struct. Control Health Monit., 22(1), 152-176, DOI: 1002/stc.1666. https://doi.org/10.1002/stc.1666
- Dinh, V.N., Basu, B. and Nielsen, S.R.K. (2013), "Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines", Coupled Syst. Mech., 2(3), 231-253. https://doi.org/10.12989/csm.2013.2.3.231
- Faltinsen, O.M. (1990), Sea Loads on Ships and Offshore Structures, Cambridge University Press.
- Fitzgerald, B., Basu, B. and Nielsen, S.R.K. (2013), "Active tuned mass dampers for control of inplane vibrations of wind turbine blades", Struct. Control Health Monit., 20(12), 1377-1396, DOI: 1002/stc.1524. https://doi.org/10.1002/stc.1524
- Flexcom. www.mcskenny.com/support/flexcom (accessed August 2015).
- Hansen, M.H. (2003), "Improved modal dynamics of wind turbines to avoid stall-induced vibrations", Wind Energy, 6(2), 179-195, DOI:10.1002/we.79.
- Huang, C., Arrigan, J., Nagarajaiah, S. and Basu, B. (2010), "Semi-active algorithm for edgewise vibration control in floating wind turbine blades", Proceedings of the ASCE Earth and Space Conference, CD ROM, DOI: 10.1061/41096(366)192.
- International Electrotechnical Commission (IEC) (2006), IEC 61400-3, Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines.
- ISSC (2009), Specialist Committee V.4, Ocean wind and wave energy utilization, 17th International Ship and Offshore Structures Congress, Seoul, Korea.
- Jonkman, J.M. (2010), Definition of the floating system for Phase IV of OC3, Technical Report NREL/TP-500-47535, Golden, CO, USA.
- Jonkman, J.M., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060, USA.
- Lackner, M.A. (2009), "Controlling platform motions and reducing blade loads for floating wind turbines", Wind Eng., 33(6), 541-553. https://doi.org/10.1260/0309-524X.33.6.541
- Lackner, M.A. and Rotea. M.A (2011), "Structural control of floating wind turbines", Mechatronics, 21, 704-719, DOI:10.1016/j.mechatronics.2010.11.007.
- MATLAB, The MathWorks, Inc., Natick, United States. Release 2011b.
- Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbines vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11(4), 305-317. https://doi.org/10.1002/we.249
- Nagarajaiah, S. (2009), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform", Struct. Control Health Monit., 16(7-8), 800-841, DOI: 10.1002/stc.349.
- Nagarajaiah, S. and Sonmez, E. (2007), "Structures with semiactive variable stiffness single/multiple tuned mass dampers", J. Struct. Eng. - ASCE, 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67)
- Nagarajaiah, S. and Varadarajan, N. (2005), "Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD", Eng. Struct., 27, 431-441. https://doi.org/10.1016/j.engstruct.2004.10.015
- Sannasiraj, S.A., Sundar, V. and Sundaravadivelu, R. (1998), "Mooring forces and motion responses of pontoon-type floating breakwaters", Ocean Eng., 25(1), 27-48. https://doi.org/10.1016/S0029-8018(96)00044-3
- Sarpkaya, T. and Isaacson, M. (1981), Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold, NewYork.
- Staino, B., Basu, B. and Nielsen, S.R.K. (2012), "Actuator control of edgewise vibrations in wind turbine blades", J. Sound Vib., 331, 1233-1256, DOI:10.1016/j.jsv.2011.11.003.
- Waris, M.B. and Ishihara, T. (2012), "Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model", Coupled Syst. Mech., 1(3), 247-268. https://doi.org/10.12989/csm.2012.1.3.247
Cited by
- Multibody Dynamics of a Floating Wind Turbine Considering the Flexibility Between Nacelle and Tower 2017, https://doi.org/10.1142/S0219455418500852
- Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper vol.410, 2017, https://doi.org/10.1016/j.jsv.2017.08.050
- Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage 2017, https://doi.org/10.1002/stc.2117
- Vibration control in wind turbines to achieve desired system-level performance under single and multiple hazard loadings pp.15452255, 2018, https://doi.org/10.1002/stc.2261
- A re-centering deformation-amplified shape memory alloy damper for mitigating seismic response of building structures vol.25, pp.9, 2018, https://doi.org/10.1002/stc.2233
- Wave-current interaction effects on structural responses of floating offshore wind turbines vol.22, pp.2, 2018, https://doi.org/10.1002/we.2288
- Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine vol.61, pp.6, 2016, https://doi.org/10.12989/sem.2017.61.6.785
- A monitoring system for wind turbines subjected to combined seismic and turbulent aerodynamic loads vol.4, pp.2, 2016, https://doi.org/10.12989/smm.2017.4.2.175
- A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis vol.162, pp.None, 2016, https://doi.org/10.1016/j.oceaneng.2018.05.001
- Using active tuned mass dampers with constrained stroke to simultaneously control vibrations in wind turbine blades and tower vol.22, pp.7, 2016, https://doi.org/10.1177/1369433218817892
- Control Strategies for Floating Offshore Wind Turbine: Challenges and Trends vol.8, pp.10, 2016, https://doi.org/10.3390/electronics8101185
- Semi-active eddy current pendulum tuned mass damper with variable frequency and damping vol.25, pp.1, 2016, https://doi.org/10.12989/sss.2020.25.1.065
- Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical) vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.229
- Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine vol.30, pp.6, 2016, https://doi.org/10.12989/was.2020.30.6.663
- Hybrid vibration control of offshore wind turbines under multiple external excitations vol.12, pp.4, 2016, https://doi.org/10.1063/5.0003394
- Study on a 3D pounding pendulum TMD for mitigating bi-directional vibration of offshore wind turbines vol.241, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2021.112383
- Vibration control of offshore wind turbine under multiple hazards using single variable-stiffness tuned mass damper vol.236, pp.None, 2021, https://doi.org/10.1016/j.oceaneng.2021.109473
- Conceptual design and dynamic analysis of a novel passive floating offshore wind turbine structure vol.16, pp.10, 2016, https://doi.org/10.1080/17445302.2020.1791684