DOI QR코드

DOI QR Code

Numerical Study on the Effect of Injection Nozzle Shape on the Cooling Performance in Supersonic Film Cooling

초음속 막냉각 유동에서 분사 노즐 형상이 냉각성능에 미치는 영향에 관한 수치해석적 연구

  • Kim, Sang-Min (The 1st Research and Development Institute, Agency for Defense Development)
  • Received : 2016.02.22
  • Accepted : 2016.07.13
  • Published : 2016.08.01

Abstract

In this study, the effect of injection nozzle shape on the supersonic film cooling performance is analyzed using CFD. The design parameters are inside and outside angles of upper plate of nozzle and nozzle tip thickness. It is observed that the mass flow rate of film cooling decreases with increase of inside angle, while the effect of the change of mass flow rate on the film cooling effectiveness is relatively small. In addition, cooling performance is generally reduced, except ahead of the local region where shock wave interaction with film cooling occurs, in accordance with the growth of the outside angle and tip thickness. In this paper, the CFD simulation is performed using a commercial software, ANSYS Fluent V15.0, and the CFD model is validated by comparing it with the experimental data shown in preceding research.

본 연구에서는 수치해석 모델을 기반으로 초음속 막냉각 유동에서 분사 노즐 형상이 냉각성능에 미치는 영향을 분석한다. 노즐의 형상 변수로는 막냉각 노즐의 상부벽면 내외부경사각과 노즐 팁 두께가 고려된다. 해석결과를 통해서, 노즐 상부벽면의 내부경사각이 증가할수록 유량은 감소하지만 유량감소율 대비 막냉각효과 감소는 상대적으로 적음을 확인할 수 있다. 그리고 노즐 상부벽면의 외부경사각과 노즐 팁 두께는 대체적으로 크기가 증가할수록 막냉각 성능을 감소시키지만, 충격파와 막냉각 유동의 간섭이 발생하는 국부적인 영역에서는 냉각성능을 향상시킨다. 이와 같은 해석은 상용소프트웨어인 ANSYS Fluent V15.0을 활용하며, CFD 해석모델은 선행연구의 실험결과와 비교를 통하여 검증된다.

Keywords

References

  1. Y. Choi, H. Jeong, Y. Kim and S. Kim, "Experimental Study of Film Cooling in Liquid Rocket Engine(I)," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 33, No. 6, 2005, pp.71-75 https://doi.org/10.5139/JKSAS.2005.33.6.071
  2. G. Lee, C. Son and T. Kim, "2-Dimensional Film Cooling Characteristics with the Height Variation of a Stepped Slot Exit," Trans. of the KSME(B), Vol. 29, No. 1, 2005, pp. 46-54
  3. J. Lee and Y. Kim, "Capability of Turbulence Modeling Schemes on Estimating the Film Cooling at Parallel Wall Jet-Nozzle Configuration," Journal of the Korean Society of Propulsion Engineers, Vol. 13, No. 1, 2009, pp. 10-18
  4. J. Majeski and H. Morris, "An Experimental and Computational Investigation of Film Cooling Effects on an Interceptor Forebody at Mach 10," AIAA 90-0622, 1990
  5. H. Morris, J. Majeski and E. Rawlinson, " Development of IR Sensor Window Cooling Requirements for Endoatmospheric Interceptors," AIAA-91-1439, 1991
  6. D. Harris, "High-temperature Strength of Sapphire," Proc. SPIE, Vol. 4102, 2000, pp.25-36
  7. K. Juhany, M. Hunt and J. Sivo, "Influence of Injectant Mach Number and Temperature on Supersonic Film Cooling," Journal of Thermophysics and Heat Transfer, Vol. 8, No. 1, 1994, pp.59-67 https://doi.org/10.2514/3.501
  8. S. Kim, K. Lee and K. Kim, "Numerical Study on Film-Cooling Effectiveness for Various Film-Cooling Hole Schemes," (in Korean) Journal of Computational Fluids Engineering, Vol. 16, No. 4, 2011, pp. 92-99 https://doi.org/10.6112/kscfe.2011.16.4.092
  9. S. Park, S. Choi, H. Sohn, H. Chung and H. Cho, "Effect of Secondary Flow Direction on Film Cooling Effectiveness," Trans. of the KSME(B), Vol. 37, No. 7, 2013, pp. 655-663
  10. B. Aupoix, A. Mignosi, S. Viala, F. Bouvier and R. Gaillard, "Experimental and Numerical Study of Supersonic Film Cooling," AIAA Journal, Vol. 36, No. 6, 1998, pp.915-923 https://doi.org/10.2514/2.495
  11. W. Peng and P. Jiang, "Influence of Shock Waves on Supersonic Film Cooling," Journal of Spacecraft and Rockets, Vol. 46, No. 1, 2009, pp.67-73 https://doi.org/10.2514/1.38458
  12. M. Konopka, M. Meinke and W. Schroder, "Large-Eddy Simulation of Shock/Cooling-Film Interaction," AIAA Journal, Vol. 50, No. 10, 2012, pp.2102-2113 https://doi.org/10.2514/1.J051405
  13. M. Konopka, M. Meinke and W. Schroder, "Large-Eddy Simulation of Supersonic Film Cooling at Laminar and Turbulent Injection," AIAA 2011-2250, 2011