DOI QR코드

DOI QR Code

An Experimental Study on the Failure of a Novel Composite Sandwich Structure

새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구

  • Kwak, Byeong-Su (Department of Aerospace Engineering, Gyeongsang National University) ;
  • Kim, Hong-Il (Agency for Defense Development) ;
  • Dong, Seung-Jin (Hankuk Fiber Co., Ltd. Defence and Aerospace Division) ;
  • Choi, Jin-Ho (School of Mechanical, Aerospace and Information Engineering, Gyeongsang National University) ;
  • Kweon, Jin-Hwe (School of Mechanical, Aerospace and Information Engineering, Gyeongsang National University)
  • Received : 2016.04.10
  • Accepted : 2016.08.17
  • Published : 2016.08.31

Abstract

The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

본 논문에서는 두께와 재료의 구성이 변하는 복잡한 형상의 복합재 샌드위치 구조의 파손 거동을 연구하였다. 구조물은 두께가 일정한 알루미늄 하니콤 코어 샌드위치 판넬이, 두께가 줄어드는 폼코어 샌드위치 천이부를 거쳐, 최종적으로는 면재와 면재가 만나 단순 적층판을 이루면서 다른 구조물에 체결되는 형상을 갖는다. 하중은 인장 및 압축하중의 형태로 가해지며 각 3개씩 총 6개 시편에 대한 시험을 수행하였다. 시험 결과 압축시험의 경우 재료불연속선을 따른 면재의 파손에 취약하며, 재료불연속선을 따른 파손을 피할 수 있는 경우 알루미늄 코어와 카본 면재의 디본딩에 의한 파손이 나타남을 알 수 있었다. 파손하중은 디본딩에 의한 파손까지 견디는 경우가 약 16% 높게 나타났다. 인장시험의 경우 파손모드는, 곡률부를 갖는 복합재 구조물에서 가장 취약한 부분인, 플랜지와 웹이 만나는 곡률부의 층간분리 파손이 주를 이루었다. 파손하중은 압축하중이 인장하중에 비하여 약7배 가량 높은 것으로 나타났다. 따라서 본 구조물은 주로 압축하중을 견디기 위한 목적의 구조물에 적용하여야 할 것으로 보인다.

Keywords

References

  1. Gdoutos, E.E., Daniel, I.M., and Wang, K.-A., "Compression Facing Wrinkling of Composite Sandwich Structures," Mechanics of Materials, Vol. 35, No. 3-6, 2003, pp. 511-522. https://doi.org/10.1016/S0167-6636(02)00267-3
  2. Daniel, I.M., and Abot, J.L., "Fabrication, Testing and Analysis of Composite Sandwich Beams," Composites Science and Technology, Vol. 60, No. 12-13, 2000, pp. 2455-2463. https://doi.org/10.1016/S0266-3538(00)00039-7
  3. Petras, A., and Sutcliffe, M.P.F., "Failure Mode Maps for Honeycomb Sandwich Panels," Composite Structures, Vol. 44, No. 4, 1999, pp. 237-252. https://doi.org/10.1016/S0263-8223(98)00123-8
  4. Othman, A.R., and Barton, D.C., "Failure Initiation and Propagation Characteristics of Honeycomb Sandwich Composites," Composite Structures, Vol. 85, No. 2, 2008, pp. 126-138. https://doi.org/10.1016/j.compstruct.2007.10.034
  5. Davies, G.A.O., Hitchings, D., Besant, T., Clarke, A., and Morgan, C., "Compression after Impact Strength of Composite Sandwich Panels," Composite Structures, Vol. 63, No. 1, 2004, pp. 1-9. https://doi.org/10.1016/S0263-8223(03)00119-3
  6. Mamalis, A.G., Manolakos, D.E., Loannidis, M.B., and Papapostolou, D.P., "On the Crushing Response of Composite Sandwich Panels subjected to Edgewise Compression: Experimental," Composite Structures, Vol. 71, No. 2, 2005, pp. 246-257. https://doi.org/10.1016/j.compstruct.2004.10.006
  7. Mouritz, A.P., Gellert, E., Burchill, P., and Challis, K., "Review of Advanced Composite Structure for Naval Ships and Submarines," Composite Structures, Vol. 53, No. 1, 2001, pp. 21-42. https://doi.org/10.1016/S0263-8223(00)00175-6
  8. Kim, K.S., and Jang, Y.S., "Structural Analysis of Composite Sandwich Panel under Compression Loading," Korea Aerospace Research Institute, Vol. 9, No. 1, 2010, pp. 9-16.
  9. Jeon, K.W., Shin, K.B., Ko, H.Y., and Kim, D.H., "A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles," The Korean Society of Mechanical Engineers, Vol. 33, No. 1, 2009, pp. 64-71. https://doi.org/10.3795/KSME-A.2009.33.1.64
  10. Oterkus, E., Guven, I., and Madenci, E., "Effect of Core Termination Features on Failure Modes in Sandwich Panels by Using Peridynamic Theory," Proceeding of the 51st AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Florida, United States, April, 2010.
  11. Evertz, R.L., Investigation of Core Closeouts in Fiber-Reinforced Sandwich Laminates, Master Thesis, Montana State University, United States, 2000.
  12. Cao, J., and Grenestedt, J.L., "Design and Testing of Joints for Composite Sandwich/Steel Hybrid Ship Hulls," Composite Part A, Vol. 35, No. 9, 2004, pp. 1091-1105. https://doi.org/10.1016/j.compositesa.2004.02.010
  13. Demelio, G., Genovese, K., and Pappalettere, C., "An Experimental Investigation of Static and Fatigue Behaviour of Sandwich Composite Panels Joined by Fasteners," Composite Part B, Vol. 32, No. 4, 2001, pp. 299-308. https://doi.org/10.1016/S1359-8368(01)00007-5
  14. Ramakrishna, S., Hamada, H., and Nishiwaki, M., "Bolted Joints of Pultruded Sandwich Composite Laminates," Composite Structures, Vol. 32, No. 1-4, 1995, pp. 227-235. https://doi.org/10.1016/0263-8223(95)00031-3
  15. Choi, B.H., Shin, S.J., Song, M.H., Choi, J.H., and Kweon, J.H., "Strength of Sandwich-to-Laminate Single-lap Bonded Joints in Elevated Temperature and Wet Condition," Journal of the Korean Society for Aeronautical and Space Science, Vol. 38, No. 11, 2010, pp. 1115-1122. https://doi.org/10.5139/JKSAS.2010.38.11.1115
  16. Park, Y.B., Cho, H.I., Choi, J.H., and Kweon, J.H., "Effect of Joining Methods on the Failure of Aluminum Honeycomb Sandwich Joints under Shear Loading," Journal of the Korean Society for Aeronautical and Space Science, Vol. 39, No. 7, 2011, pp. 643-651. https://doi.org/10.5139/JKSAS.2011.39.7.643
  17. Cho, K.D., Ha, S.R., Kang, K.H., Kim, J.E., and Yang, S.C., "An Experimental Study on the Mechanical Properties of T-Joints Structure using CFRP/Al Honeycomb Sandwich Composite," Journal of the Korean Society for Precision Engineering, Vol. 29, No. 3, 2012, pp. 313-318. https://doi.org/10.7736/KSPE.2012.29.3.313
  18. Jang, H.J., Kang, S.G., Shin, K.B., and Han, S.H., "A Study on the Joint Technique of Dissimilar Materials for Hybrid Lightweight Modular Carbody Structures Made of Aluminum Extrusion and Sandwich Composites," Proceeding of the 2012 Korean Society for Railway Spring Conference, Mokpo, Korea, May 2012, pp. 785-787.
  19. Kim, K.S., An, J.M., Jang, Y.S., and Yi, Y.M., "Strength Improvement of Insert Joint for Composite Sandwich Structure," Journal of the Korean Society for Aeronautical and Space Science, Vol. 38, No. 1, 2010, pp. 29-34. https://doi.org/10.5139/JKSAS.2010.38.1.029
  20. Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions, ASTM Standard C364.
  21. Kim, J.H., Han, J.S., Bae, B.H., Choi, J.H., and Kweon, J.H., "Manufacturing and Structural Analysis of Thick Composite Spar using AFP Machine," Composite Research, Vol. 28, No. 4, 2015, pp. 212-218. https://doi.org/10.7234/composres.2015.28.4.212

Cited by

  1. 새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증 vol.30, pp.6, 2016, https://doi.org/10.7234/composres.2017.30.6.384