DOI QR코드

DOI QR Code

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface

니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석

  • Jung, Daesung (Department of Energy Science, Sungkyunkwan University) ;
  • Jeon, Cheolho (Advanced Nano-surface Group, Korea Basic Science Institute) ;
  • Song, Wooseok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • An, Ki-Seok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Chong-Yun (Department of Physics, Sungkyunkwan University)
  • Received : 2016.08.19
  • Accepted : 2016.08.30
  • Published : 2016.08.31

Abstract

A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

이차원 구조의 탄소 결합체인 그래핀은 뛰어난 물리적, 화학적 특성으로 인해 미래 전자 소자의 소재로 크게 각광을 받고 있는 물질이다. 따라서, 소자에서 사용된 기판이 그래핀의 물리적 특성에 끼치는 영향에 대한 이해는 그래핀의 응용에 있어서 필수적이며, 그에 대한 연구를 수행하였다. 니켈 (111)과 (100) 결정면에서 각각 성장한 그래핀과 니켈 기판의 상호작용에 대한 연구를 수행함과 동시에, 산화규소 기판으로 전사한 후, 기판과 그래핀과의 상호작용을 라만 분광법을 이용하여 연구하였다. 니켈 기판에서 성장한 그래핀은 기판의 면 방향과 상관없이 기판으로부터 전하의 이동에 따른 도핑효과는 발견되지 않았으며, 산화규소 기판 또한 도핑효과는 없었다. 니켈 기판과 그래핀 사이의 결합력이 그래핀과 산화규소 기판과의 결합력합보다 더 큰 것으로 분석이 되었으며, 니켈에서 성장한 그래핀은 기판의 영향을 받아 수축되어 있었고, 니켈 (100) 면에서는 그래핀이 엇맞음 성장하였음을 확인하였다. 마지막으로, 니켈 (111), (100) 면에서 성장한 그래핀을 산화 규소 기판으로 전사하면 서로 다른 파수 값에서 2D band의 픽이 관측되었다.

Keywords

References

  1. Katanelson, M., Novoselov, K.S., and Geim, A.K., "Chiral Tunneling and the Klein Paradox in Graphene," Nature Physics, Vol. 2, 2006, pp. 620-625. https://doi.org/10.1038/nphys384
  2. Stander, N., Huard, B., and Goldhaber-Gordon, D., "Evidence for Klein Tunneling in Graphene p-n Jundtion," Physical Review Letters, Vol. 102, 2009, pp. 026807. https://doi.org/10.1103/PhysRevLett.102.026807
  3. Andrea, F.Y., and Kim, P., "Quantum Interference and Klein Tunneling in Graphene Heterojunctions," Nature Physics, Vol. 5, 2009, pp. 222-226. https://doi.org/10.1038/nphys1198
  4. Semenoff, G.W., "Condensed-Matter Simulation of a Three- Demensional Anomaly," Physical Review Letters, Vol. 53, No. 26, 1984, pp. 2449-2452. https://doi.org/10.1103/PhysRevLett.53.2449
  5. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., and Hong, B.H., "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, Vol. 457, 2009, pp. 706-710. https://doi.org/10.1038/nature07719
  6. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnar, S.V., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M., "Spintronics: A Spin-Based Electronics Vision for the Future," Science, Vol. 294, No. 5546, 2001, pp. 1488-1495. https://doi.org/10.1126/science.1065389
  7. Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J., and Dai, H., "N-Doping of Graphene Through Electrothermal Reactions with Ammonia," Science, Vol. 324, No. 5928, 2001, pp. 768-771. https://doi.org/10.1126/science.1170335
  8. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., "Electric Field Effect in Atomically Thin Carbon Films," Science, Vol. 306, No. 5696, 2004, pp. 666-669. https://doi.org/10.1126/science.1102896
  9. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., "Two-Dimensional Gas of Massless Dirac Fermions in Graphene," Nature, Vol. 438, 2005, pp. 197-200. https://doi.org/10.1038/nature04233
  10. Zhang, Y., Tan, Y.W., Stormer, H.L., and Kim, P., "Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene," Nature, Vol. 438, 2005, pp. 201-204. https://doi.org/10.1038/nature04235
  11. Wang, Y.Y., Ni, Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W., and Wee, A.T.S., "Raman Studies of Monolayer Graphene: The Substrate Effect," The Journal of Physical Chemistry C, Vol. 112, No. 29, 2008, pp. 10637-10640. https://doi.org/10.1021/jp8008404
  12. Usachov, D.Y., Dobrotvorskii, A.M., Shikin, A.M., Adamchuk, V.K., Varykhalov, A.Y., Rader, O., and Gudat, W., "Graphene Morphology on Ni Single-Crystal Surfaces: Experimental and Theoretical Investigation," Bulletin of the Russian Academy of Sciences: Physics, Vol. 73, No. 5, 2009, pp. 679-682. https://doi.org/10.3103/S1062873809050451
  13. Malard, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus M.S., "Raman Spectroscopy in Graphene," Physics Reports, Vol. 473, No. 5-6, 2009, pp. 51-87.
  14. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C., and Sood, A.K., "Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor," Nature Nanotechnology, Vol. 3, 2008, pp. 210-215. https://doi.org/10.1038/nnano.2008.67
  15. Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A.C., Geim, A.K., Novoselov, K.S., and Galiotis, C., "Subjecting a Graphene Monolayer to Tension and Compression," Small, Vol. 5, No. 21, 2009, pp. 2397-2402. https://doi.org/10.1002/smll.200900802
  16. Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., and Shen, Z.X., "Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening," ACS Nano, Vol. 2, No. 2, 2008, pp. 2301- 2305. https://doi.org/10.1021/nn800459e
  17. Lee, J.H., Shin, J.H., Kim, Y.H., Park, S.M., Alegaonkar, P.S., and Yoo, J.B., "A New Method of Carbon-Nanotube Patterning Using Reduction Potential," Advanced Materials, Vol. 21, No. 12, 2009, pp. 1257-1260. https://doi.org/10.1002/adma.200802507
  18. Yamamoto, K., Fukushima, M., and Osaka, T., "Charge-Transfer Mechanism for the (Monolayer Graphite)/Ni(111) System," Physical Review B, Vol. 45, No. 19, 1992, pp.11358. https://doi.org/10.1103/PhysRevB.45.11358