DOI QR코드

DOI QR Code

고강도, 고강성, 그리고 유연한 탄소나노튜브 버키페이퍼-폴리우레탄 나노복합체

CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexible

  • Ha, Yu-Mi (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Lim, Da-un (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Yoong Ahm (Department of Polymer Engineering, Chonnam National University) ;
  • Jung, Yong Chae (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
  • 투고 : 2016.08.16
  • 심사 : 2016.08.31
  • 발행 : 2016.08.31

초록

본 연구에서는 습식초지법을 이용하여 탄소나노튜브 버키페이퍼를 제조하고 고강도, 고강성 그리고 유연성을 증대시키기 위하여 폴리우레탄(PU)의 점도를 조절하여 코팅제조한 후 기계적 특성에 미치는 영향에 대하여 살펴보았다. Raman, TGA, PL, SEM, TEM 그리고 Tensile test을 이용하여 SWNTs, SWNTs-buckypaper(SWNTs-BP), 그리고 SWNTs-BP/PU 나노복합필름에 대한 구조 및 물성을 평가하였으며 복합필름단면은 전계방사 주사전자현미경(FE-SEM)을 사용하여 관찰한 후 물성증대원인을 해석하였다. 특히, 5 wt%의 PU 용액으로 코팅할 때 튜브간의 계면 접착력 증가로 최종 물성향상에 기여하였다. 최종적으로 이러한 구조적인 특성을 이용할 경우 초경량, 고강도 나노복합소재를 제조하는데 기여할 것으로 기대된다.

Carbon nanotube buckypaper (CNTs-BP)/thermoplastic polyurethane (PU) elastomer composites were successfully fabricated. The CNTs-BP/PU nanocomposites exhibited simultaneous improvements in both tensile modulus and strength by 1360 and 430%, respectively, as compared to pure PU. Possible reinforcing mechanisms were evidenced by SEM analyses and tensile tests. The CNTs-BP/PU nanocomposites can be potentially used as an inter-reinforcing agent in ultra-lightweight, high-strength aircraft, carbon-fiber-reinforced plastics, etc.

키워드

참고문헌

  1. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, Academic Press, 1996.
  2. Collins, P.G., Zettl, A., Bando, H., Thess, A., and Smalley, R.E., "Nanotube Nanodevice," Science, Vol. 278, 1997, pp. 100-102. https://doi.org/10.1126/science.278.5335.100
  3. Ajayan, P.M., Schadler, L.S., Giannaris, C., and Rubio, A., "Single- Walled Carbon Nanotube-Polymer Composites: Strength and Weakness," Advanced Materials, Vol. 12, 2000, pp. 750-753. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  4. Baughman, R.H., Zakhidov, A.A., and de Heer, W.A., "Carbon Nanotubes--the Route Toward Applications," Science, Vol. 297, 2002, pp. 787-792. https://doi.org/10.1126/science.1060928
  5. Treacy, M.M., Ebessen, T.W., and Gibson, J.M., "Exceptionally high Young's Modulus Observed for Individual Carbon Nanotubes," Nature, Vol. 381, 1996, pp. 678-680. https://doi.org/10.1038/381678a0
  6. Chatterjee, T., Yurekli, K., Hadjiev, V.G., and Krishnamoori, R., "Single‐Walled Carbon Nanotube Dispersions in Poly (Ethylene Oxide)," Advanced Functional Materials, Vol. 15, 2005, pp. 1832-1838. https://doi.org/10.1002/adfm.200500290
  7. Berber, S., Kwon, Y., and Tomanek, D., "Unusually High Thermal Conductivity of Carbon Nanotubes," Physical Review Letters Vol. 84, 2000, pp. 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613
  8. Kaneto, K., Tsuruta, M., Sakai, G., Cho, W., and Ando, Y., "Electrical Conductivities of Multi-wall Carbon Nanotubes," Synthetic Metals, Vol. 103, 1999, pp. 2543-2546. https://doi.org/10.1016/S0379-6779(98)00221-5
  9. Wang, Z., Liang, Z., Wang, B., Zhang, C., and Kramer, L., "Processing and Property Investigation of Single-walled Carbon Nanotube(SWNT) Buckypaper/epoxy Resin Matrix Nanocomposites," Composite: Part A, Vol. 35, 2004, pp. 1225-1232. https://doi.org/10.1016/j.compositesa.2003.09.029
  10. Wang, D., Song, P., Liu, C., Wu, W., and Fan, S., "Highly Oriented Carbon Nanotube Papers Made of Aligned Carbon Nanotubes," Nanotechnology, Vol. 19, 2008, pp. 075609. https://doi.org/10.1088/0957-4484/19/7/075609
  11. Hwang, S.-H., Park, H.H., and Park, Y.B., "Piezoresistive Behavior and Multi-directional Strain Sensing Ability of Carbon Nanotube-graphene Nanoplatelet Hybrid Sheets," Smart Materials Structures, Vol. 22, 2013, pp. 015013. https://doi.org/10.1088/0964-1726/22/1/015013
  12. Diez-Pascual, A.M., Guan, J., Simard, B., and Gomez-Fatou, M.A., "Poly(phenylene sulphide) and Poly(ether ether ketone) Composites Reinforced with Single-walled Carbon Nanotube Buckypaper: I-structure, Thermal Stavility and Crystallization Behaviou," Composite: Part A, Vol. 43, 2012, pp. 997-1006.
  13. Lopes, P.E., Hattum, F.V., Pereira, C.M.C., Novoa, P.J.R.O., Forero, S., Hepp, F., and Pambaguian, L., "High CNT Content Composites with CNT Buckypaper and Epoxy Resin Matrix: Impregnation Behaviour Composite Production and Characterization," Composite Structures, Vol. 92, 2010, pp. 1291-1298. https://doi.org/10.1016/j.compstruct.2009.11.003
  14. Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A., "Raman Spectroscopy of Carbon Nanotubes," Physics Report, Vol. 409, 2005, pp. 47-99. https://doi.org/10.1016/j.physrep.2004.10.006
  15. Saito, R., Jorio, A., Souza Filho, A., Dresselhaus, G., Dresselhaus, M.S., and Pimenta, M.A., "Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering," Physical Review Letters, Vol. 88, 2002, pp. 027401.
  16. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, Imperial College Press: New York, 1998.
  17. O'Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Bruce Weisman, R., and Smalley, R.E., "Band Gap Fluorescence from Individual Single- Walled Carbon Nanotubes," Science, Vol. 297, 1998, pp. 593-596.
  18. Jung, Y.C., Kim, H.H., Kim, Y.A., Kim, J.H., Cho, J.W., Endo, M., and Dresselhaus, M.S., "Optically Active Multi-Walled Carbon Nanotubes for Transparent, Conductive Memory-Shape Polyurethane Film," Macromolecular, Vol. 43, 2010, pp. 6106- 6112. https://doi.org/10.1021/ma101039y
  19. Veca, L. M., Lu, F., Meziani, M.J., Cao, L., Zhang, P., Qi, G., Qu, L., Shrestha, M., and Sun, Y.-P., "Polymer Functionalization and Solubilization of Carbon Nanosheets," Chemical Communications, Vol. 45, 2009, pp. 2565-2567.
  20. Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., and Chen, Y., "A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property," Advanced Materials, Vol. 21, 2009, pp. 1275-1279. https://doi.org/10.1002/adma.200801617
  21. Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., and Niu, L., "Covalent Functionalization of Polydisperse Chemically-converted Graphene Sheets with Amine-terminated Ionic Liquid," Chemical Communications, Vol. 45, 2009, pp. 3880-3882.
  22. Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., de Heer, W.A., Conrad, E.H., and Haddon, R.C., "Spectroscopy of Covalently Functionalized Graphene," Nano Letters, Vol. 10, 2010, pp. 4061-4066. https://doi.org/10.1021/nl1021128
  23. Liu, L.-H., Lerner, M.M., and Yan, M., "Derivitization of Pristine Graphene with Well-defined Chemical Functionalities," Nano Letters, Vol. 10, 2010, pp. 3754-3756. https://doi.org/10.1021/nl1024744