DOI QR코드

DOI QR Code

사물인터넷 컨텍스트 획득 비호환성 중재를 위한 디자인 패턴

Design Patterns for Mitigating Incompatibility of Context Acquisition Schemes for IoT Devices

  • 투고 : 2016.01.04
  • 심사 : 2016.04.20
  • 발행 : 2016.08.31

초록

사물인터넷의 센서는 주변 컨텍스트를 수집하는데 사용되며, 애플리케이션은 이를 분석하여 상황을 인지하거나 예측한 후 상황에 특화된 스마트 서비스를 제공하게 된다. 사물인터넷 컨텍스트를 확보(Acquisition)하는데 풀링, 푸싱 등 방식들이 있는데, 대부분의 사물인터넷 장비는 특정한 하나의 방식만을 지원한다. 따라서, 애플리케이션이 필요로 하는 컨텍스트 획득 방식과 장비가 지원하는 획득 방식이 일치하지 않을 수 있으며 이 경우 개발 노력의 증가, 향후 유지보수 비효율성등의 문제가 발생한다. 본 논문에서는 애플리케이션과 장비 간의 컨텍스트 획득 방식 비호환성을 효과적으로 해결하기 위한 디자인 패턴(Design Pattern)들을 제시한다. 제시된 패턴들을 적용하면, 비호환성이 발생하는 사물인터넷 애플리케이션을 보다 체계적이며, 효과적으로 개발할 수 있고, 나아가 향후 유지보수의 효율성도 증가된다.

Sensors equipped in Internet-of-Thing (IoT) devices are used to measure the surrounding contexts, and IoT applications analyze the contexts to infer situations and provide situation-specific smart services. There are different context acquisition schemes including pulling, pushing, and broadcasting. Most IoT devices support only one of the schemes. Hence, there can be an incompatible issue on data acquisition schemes between applications and devices, and consequently it could result in an increased development cost and inefficiency on application maintenance. This paper presents design patterns which can effectively remedy the incompatibility problem. By applying the patterns, IoT applications with incompatibility can be systematically and effectively developed. And, also its maintainability is expected to increase.

키워드

참고문헌

  1. S. Haller, S. Karnouskos, and C. Schroth, "The Internet of Things in an Enterprise Context," FUTURE INTERNET - FIS 2008, Vol.5468, pp.14-28, 2009.
  2. ITU Internet Reports 2005: The Internet of Things [Internet], https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf (downloaded 2016, Aug., 9).
  3. D. Niculescu, "Communication paradigms for sensor networks," IEEE Communications Magazine, Vol.43, No.3, pp.116-122, 2005.
  4. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, "Sensing as a service model for smart cities supported by Internet of Things," Transactions on Emerging Telecommunications Technologies, Vol.25, No.1, pp.81-93, 2014. https://doi.org/10.1002/ett.2704
  5. Y.-S. Chen and Y.-R. Chen, "Context-oriented Data Acquisition and Integration Platform for Internet of Things," in Proceedings of 2012 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2012), pp. 103-108, Nov., 2012.
  6. Y. Hong, "A Resource-Oriented Middleware Framework for Heterogeneous Internet of Things," in Proceedings of 2012 International Conference on Cloud Computing and Service Computing (CSC 2012), pp.12-16, Nov., 2012.
  7. Z. Haibo, "A Framework to Enable Communication in Heterogeneous Environment for the Internet of Things," Journal of Computational Information Systems, Vol.8, No.18, pp.7791-7798, 2012.
  8. G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, "Smart Objects as Building Blocks for the Internet of Things," IEEE Internet Computing, Vol.14, No.1, pp.44-51, Jan.-Feb., 2010. https://doi.org/10.1109/MIC.2009.143
  9. T. S. Lopez, D. C. Ranasinghe, M. Harrison, and D. McFarlane, "Adding Sense to the Internet of Things," Personal and Ubiquitous Computing, Vol.16, No.3, pp. 291-308, Mar., 2012. https://doi.org/10.1007/s00779-011-0399-8
  10. A. Gomez-Goiri and D. Lopez-de-Ipina, "A Triple Space-based Semantic Distributed Middleware for Internet of Things," in Proceedings of the 10th International Conference on Current trends in Web Engineering (ICWE 2010), Lecture Notes in Computer Science (LNCS), Vol.6385, pp.447-458, Jul., 2010.
  11. A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Y. Terziyan, "Smart Semantics Middleware for the Internet of Things," in Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, Intelligent Control Systems and Optimization (ICINCO 2008), pp.169-178, May, 2008.
  12. F. Buschmann, K. Henny, and D. S. Schmidt, "Pattern-Oriented Software Architecture, Volume 4: A Pattern Language for Distributed Computing," Wiley, Apr., 2007.
  13. E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, "Design Patterns: Elements of Reusable Object-Oriented Software," Addison-Wesley Professionals, Nov., 1994.
  14. LAXTHA Inc., [Post Analysis - Spectrum] Analyzing Power Spectrum of Brainwave Data [Internet], http://www.laxtha.com/SiteView.asp?x=7&y=32&z=33&infid=154.
  15. NeuroSky, Developer tools [Internet], http://store.neurosky.com/collections/developer-tools.
  16. Cooking hacks, E-health sensor platform V2.0 for Arduino and raspberry pi [Biometric / medical Applications] [Internet], https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical/.
  17. LAXTHA Inc., [Post Analysis - Muscular Contraction] Overview of EMG Amplitude Analysis Method (Muscular Contraction, Muscle Fatigue) [Internet], http://www.laxtha.com/SiteView.asp?x=7&y=46&z=41&infid=176.
  18. LAXTHA Inc., [Post Analysis - Muscle Fatigue] Overview of EMG Frequency Analysis Method (Muscle Fatigue) [Internet], http://www.laxtha.com/SiteView.asp?x=7&y=46&z=41&infid=177.