DOI QR코드

DOI QR Code

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi (Department of Civil Engineering, University of Birjand) ;
  • Khatibinia, Mohsen (Department of Civil Engineering, University of Birjand) ;
  • Sarafrazi, Seyyed R. (Department of Civil Engineering, University of Birjand)
  • Received : 2015.01.13
  • Accepted : 2016.09.01
  • Published : 2016.08.30

Abstract

This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

Keywords

References

  1. Allaire, G., Jouve, F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), 363-393. https://doi.org/10.1016/j.jcp.2003.09.032
  2. Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization Theory, Methods and Applications, Springer-Verlag, New York, NY, USA.
  3. Burger, M., Hackl, B. and Ring, W. (2004), "Incorporating topological derivatives into level set methods", J. Comput. Phys., 194(1), 344-362. https://doi.org/10.1016/j.jcp.2003.09.033
  4. Cho, S. and Ha, S.H. (2009), "Isogeometric shape design optimization: exact geometry and enhanced sensitivity", Struct. Multi. Optim., 38(1), 53-70. https://doi.org/10.1007/s00158-008-0266-z
  5. Dijk, N.P., Maute, K., Langelaar, M. and Keulen, F. (2013), "Level-set methods for structural topology optimization: A review", Struct. Multidiscip. Opt, 48(3), 437-472. https://doi.org/10.1007/s00158-013-0912-y
  6. Fanjoy, D. and Crossley, W. (2000), "Using a genetic algorithm to design beam cross-sectional topology for bending, torsion, and combined loading", Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, April.
  7. Garreau, S., Guillaume, P. and Masmoudi, M. (2001), "The topological asymptotic for PDE systems: the elasticity case", SIAM. J. Control. Optim, 39(6), 1756-1778. https://doi.org/10.1137/S0363012900369538
  8. Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel. Compos. Struct., Int. J., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
  9. Haipeng, J., Beom, H.G., Wanga, Y., Lin, S. and Liu, B. (2011), "Evolutionary level set method for structural topology optimization", Comput. Struct., 89(5-6), 445-454. https://doi.org/10.1016/j.compstruc.2010.11.003
  10. Huaug, E.J., Chioi, K.K. and Kov, V. (1986), Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando, FL, USA.
  11. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  12. Jakiela, M.J., Chapman. C., Duda, J., Adewuya, A. and Saitou, K. (2000), "Continuum structural topology design with genetic algorithms", Comput. Meth. Appl. Mech. Eng, 186(2-4), 339-356. https://doi.org/10.1016/S0045-7825(99)00390-4
  13. Jia, H., Beom, H.G., Wang, Y., Lin, S. and Liu, B. (2011), "Evolutionary level set method for structural topology optimization", Comput. Struct., 89(5-6), 445-454. https://doi.org/10.1016/j.compstruc.2010.11.003
  14. Kane, C. and Schoenauer, M. (1996), "Topological optimum design using genetic algorithms", Contr. Cybern., 25(5), 1059-1088.
  15. Kaveh, A., Hassani, B., Shojaee, S. and Tavakkoli, S.M. (2004), "Structural topology optimization using ant colony methodology", Eng. Struct, 30(9), 2559-2565. https://doi.org/10.1016/j.engstruct.2008.02.012
  16. Lu, T., Neittaanmaki, T. and Tai, X.C. (1991), "A parallel splitting up method and its application to Navier-Stokes equations", Appl. Math. Lett., 4(2), 25-29. https://doi.org/10.1016/0893-9659(91)90161-N
  17. Luo, Z. (2013), "A short survey: Topological shape optimization of structures using level set methods", J. Appl. Mech. Eng., 2, 123-128.
  18. Mashayekhi, M., Salajegheh, S. and Dehghani, M. (2016), "Topology optimization of double and triple layer grid structures using a modified gravitational harmony search algorithm with efficient member grouping strategy", Comput. Struct., 172, 40-58. https://doi.org/10.1016/j.compstruc.2016.05.008
  19. Mohammadian, M. and Shojaee, S. (2012), "Binary level set method for structural topology optimization with MBO type of projection", Int. J. Numer. Meth. Eng., 89(5), 658-670. https://doi.org/10.1002/nme.3260
  20. Murat, F. and Simon, S. (1976), Etudes de problems d' optimal design, In: Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, Volume 41, pp. 54-62.
  21. Nagy, A.P., Abdalla, M.M. and Gürdal, Z. (2010), "Isogeometric sizing and shape optimization of beam structures", Comput. Methods Appl. Mech. Eng., 199(17-20), 1216-1230. https://doi.org/10.1016/j.cma.2009.12.010
  22. Osher, S. and Fedkiw, R.P. (2002), Level Set Methods and Dynamic Implicit Surface, Springer-Verlag, New York, NY, USA.
  23. Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys, 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  24. Qian, X. (2010), "Full analytical sensitivities in NURBS based isogeometric shape optimization", Comput. Meth. Appl. Mech. Eng., 199(29-32), 2059-2071. https://doi.org/10.1016/j.cma.2010.03.005
  25. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), "Isogeometric topology optimization of structures using level set method incorporating sensitivity analysis", Int. J. Optim. Civil. Eng, 6(3), 405-422.
  26. Rozvany, G.I.N. (1989), Structural Design via Optimality Criteria, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  27. Rozvany, G.I.N. and Zhou, M. (1991), "The COC algorithm, Part I: Cross section optimization or sizing", Comp. Meth. Appl. Mech. Eng., 89(1-3), 281-308. https://doi.org/10.1016/0045-7825(91)90045-8
  28. Salajegheh, S., Mashayekhi, M., Khatibinia, M. and Keykha, M. (2009), "Optimum shape design of space structures by genetic algorithm", Int. J. Space Struct., 24(1), 45-57. https://doi.org/10.1260/026635109788251502
  29. Schmit, L.A. and Farsi, B. (1974), "Some approximation concepts for structural synthesis", AIAA. J., 12(5), 692-699. https://doi.org/10.2514/3.49321
  30. Schmit, L.A. and Miura, H. (1976), Approximation Concepts for Efficient Structural Synthesis, NASA Publisher, Washington, USA.
  31. Seo, Y.D., Kim, H.J. and Youn, S.K. (2010), "Isogeometric topology optimization using trimmed spline surfaces", Comput. Meth. Appl. Mech. Eng. 199(49-52), 3270-3296. https://doi.org/10.1016/j.cma.2010.06.033
  32. Shojaee, S. and Mohamadian, M. (2011), "A binary level set method for structural topology optimization", Int. J. Optim. Civil. Eng., 1(1), 73-90.
  33. Shojaee, S. and Mohamadian, M. (2012), "Structural topology optimization using an enhanced level set method", Sci. Iran, 19(5), 1157-1167. https://doi.org/10.1016/j.scient.2012.06.024
  34. Shojaee, S. and Valizadeh, N. (2012), "NURBS-based isogeometric analysis for thin plate problems", Struct. Eng. Mech., Int. J., 41(5), 617-632. https://doi.org/10.12989/sem.2012.41.5.617
  35. Shojaee, S., Mohamadian, M. and Valizadeh, N. (2012), "Composition of isogeometric analysis with level set method for structural topology optimization", Int. J. Optim. Civil. Eng., 2(1), 47-70.
  36. Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., Int. J., 48(1), 125-150. https://doi.org/10.12989/sem.2013.48.1.125
  37. Sigmund, O. (1994), "Design of material structures using topology optimization", Ph.D. Thesis; Department of Solid Mechanics, Technical University of Denmark, Denmark.
  38. Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207
  39. Vanderplaats, G.N. and Salajegheh, E. (1989), "A new approximation method for stress constraints in structural synthesis", AIAA. J., 27(3), 352-358. https://doi.org/10.2514/3.10119
  40. Wall, W.A., Frenzel, M.A. and Cyron, C. (2008), "Isogeometric structural shape optimization", Comput. Meth. Appl. Mech. Eng., 197(33-40), 2976-2988. https://doi.org/10.1016/j.cma.2008.01.025
  41. Wang, M.Y., Wang, X.M. and Guo, D.M. (2004), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192(1-2), 217-224.
  42. Weickert, J., Romeny, B.M. and Viergever, M. (1998), "Efficient and reliable schemes for nonlinear diffusion filtering", IEEE. Trans. Image. Process, 7(3), 398-410. https://doi.org/10.1109/83.661190
  43. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C

Cited by

  1. Topology optimization of steel plate shear walls in the moment frames vol.29, pp.6, 2016, https://doi.org/10.12989/scs.2018.29.6.771
  2. New form of perforated steel plate shear wall in simple frames using topology optimization vol.74, pp.3, 2016, https://doi.org/10.12989/sem.2020.74.3.325