References
- Allaire, G., Jouve, F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), 363-393. https://doi.org/10.1016/j.jcp.2003.09.032
- Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization Theory, Methods and Applications, Springer-Verlag, New York, NY, USA.
- Burger, M., Hackl, B. and Ring, W. (2004), "Incorporating topological derivatives into level set methods", J. Comput. Phys., 194(1), 344-362. https://doi.org/10.1016/j.jcp.2003.09.033
- Cho, S. and Ha, S.H. (2009), "Isogeometric shape design optimization: exact geometry and enhanced sensitivity", Struct. Multi. Optim., 38(1), 53-70. https://doi.org/10.1007/s00158-008-0266-z
- Dijk, N.P., Maute, K., Langelaar, M. and Keulen, F. (2013), "Level-set methods for structural topology optimization: A review", Struct. Multidiscip. Opt, 48(3), 437-472. https://doi.org/10.1007/s00158-013-0912-y
- Fanjoy, D. and Crossley, W. (2000), "Using a genetic algorithm to design beam cross-sectional topology for bending, torsion, and combined loading", Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, April.
- Garreau, S., Guillaume, P. and Masmoudi, M. (2001), "The topological asymptotic for PDE systems: the elasticity case", SIAM. J. Control. Optim, 39(6), 1756-1778. https://doi.org/10.1137/S0363012900369538
- Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel. Compos. Struct., Int. J., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
- Haipeng, J., Beom, H.G., Wanga, Y., Lin, S. and Liu, B. (2011), "Evolutionary level set method for structural topology optimization", Comput. Struct., 89(5-6), 445-454. https://doi.org/10.1016/j.compstruc.2010.11.003
- Huaug, E.J., Chioi, K.K. and Kov, V. (1986), Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando, FL, USA.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Jakiela, M.J., Chapman. C., Duda, J., Adewuya, A. and Saitou, K. (2000), "Continuum structural topology design with genetic algorithms", Comput. Meth. Appl. Mech. Eng, 186(2-4), 339-356. https://doi.org/10.1016/S0045-7825(99)00390-4
- Jia, H., Beom, H.G., Wang, Y., Lin, S. and Liu, B. (2011), "Evolutionary level set method for structural topology optimization", Comput. Struct., 89(5-6), 445-454. https://doi.org/10.1016/j.compstruc.2010.11.003
- Kane, C. and Schoenauer, M. (1996), "Topological optimum design using genetic algorithms", Contr. Cybern., 25(5), 1059-1088.
- Kaveh, A., Hassani, B., Shojaee, S. and Tavakkoli, S.M. (2004), "Structural topology optimization using ant colony methodology", Eng. Struct, 30(9), 2559-2565. https://doi.org/10.1016/j.engstruct.2008.02.012
- Lu, T., Neittaanmaki, T. and Tai, X.C. (1991), "A parallel splitting up method and its application to Navier-Stokes equations", Appl. Math. Lett., 4(2), 25-29. https://doi.org/10.1016/0893-9659(91)90161-N
- Luo, Z. (2013), "A short survey: Topological shape optimization of structures using level set methods", J. Appl. Mech. Eng., 2, 123-128.
- Mashayekhi, M., Salajegheh, S. and Dehghani, M. (2016), "Topology optimization of double and triple layer grid structures using a modified gravitational harmony search algorithm with efficient member grouping strategy", Comput. Struct., 172, 40-58. https://doi.org/10.1016/j.compstruc.2016.05.008
- Mohammadian, M. and Shojaee, S. (2012), "Binary level set method for structural topology optimization with MBO type of projection", Int. J. Numer. Meth. Eng., 89(5), 658-670. https://doi.org/10.1002/nme.3260
- Murat, F. and Simon, S. (1976), Etudes de problems d' optimal design, In: Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, Volume 41, pp. 54-62.
- Nagy, A.P., Abdalla, M.M. and Gürdal, Z. (2010), "Isogeometric sizing and shape optimization of beam structures", Comput. Methods Appl. Mech. Eng., 199(17-20), 1216-1230. https://doi.org/10.1016/j.cma.2009.12.010
- Osher, S. and Fedkiw, R.P. (2002), Level Set Methods and Dynamic Implicit Surface, Springer-Verlag, New York, NY, USA.
- Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys, 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
- Qian, X. (2010), "Full analytical sensitivities in NURBS based isogeometric shape optimization", Comput. Meth. Appl. Mech. Eng., 199(29-32), 2059-2071. https://doi.org/10.1016/j.cma.2010.03.005
- Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), "Isogeometric topology optimization of structures using level set method incorporating sensitivity analysis", Int. J. Optim. Civil. Eng, 6(3), 405-422.
- Rozvany, G.I.N. (1989), Structural Design via Optimality Criteria, Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Rozvany, G.I.N. and Zhou, M. (1991), "The COC algorithm, Part I: Cross section optimization or sizing", Comp. Meth. Appl. Mech. Eng., 89(1-3), 281-308. https://doi.org/10.1016/0045-7825(91)90045-8
- Salajegheh, S., Mashayekhi, M., Khatibinia, M. and Keykha, M. (2009), "Optimum shape design of space structures by genetic algorithm", Int. J. Space Struct., 24(1), 45-57. https://doi.org/10.1260/026635109788251502
- Schmit, L.A. and Farsi, B. (1974), "Some approximation concepts for structural synthesis", AIAA. J., 12(5), 692-699. https://doi.org/10.2514/3.49321
- Schmit, L.A. and Miura, H. (1976), Approximation Concepts for Efficient Structural Synthesis, NASA Publisher, Washington, USA.
- Seo, Y.D., Kim, H.J. and Youn, S.K. (2010), "Isogeometric topology optimization using trimmed spline surfaces", Comput. Meth. Appl. Mech. Eng. 199(49-52), 3270-3296. https://doi.org/10.1016/j.cma.2010.06.033
- Shojaee, S. and Mohamadian, M. (2011), "A binary level set method for structural topology optimization", Int. J. Optim. Civil. Eng., 1(1), 73-90.
- Shojaee, S. and Mohamadian, M. (2012), "Structural topology optimization using an enhanced level set method", Sci. Iran, 19(5), 1157-1167. https://doi.org/10.1016/j.scient.2012.06.024
- Shojaee, S. and Valizadeh, N. (2012), "NURBS-based isogeometric analysis for thin plate problems", Struct. Eng. Mech., Int. J., 41(5), 617-632. https://doi.org/10.12989/sem.2012.41.5.617
- Shojaee, S., Mohamadian, M. and Valizadeh, N. (2012), "Composition of isogeometric analysis with level set method for structural topology optimization", Int. J. Optim. Civil. Eng., 2(1), 47-70.
- Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., Int. J., 48(1), 125-150. https://doi.org/10.12989/sem.2013.48.1.125
- Sigmund, O. (1994), "Design of material structures using topology optimization", Ph.D. Thesis; Department of Solid Mechanics, Technical University of Denmark, Denmark.
- Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207
- Vanderplaats, G.N. and Salajegheh, E. (1989), "A new approximation method for stress constraints in structural synthesis", AIAA. J., 27(3), 352-358. https://doi.org/10.2514/3.10119
- Wall, W.A., Frenzel, M.A. and Cyron, C. (2008), "Isogeometric structural shape optimization", Comput. Meth. Appl. Mech. Eng., 197(33-40), 2976-2988. https://doi.org/10.1016/j.cma.2008.01.025
- Wang, M.Y., Wang, X.M. and Guo, D.M. (2004), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192(1-2), 217-224.
- Weickert, J., Romeny, B.M. and Viergever, M. (1998), "Efficient and reliable schemes for nonlinear diffusion filtering", IEEE. Trans. Image. Process, 7(3), 398-410. https://doi.org/10.1109/83.661190
- Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
Cited by
- Topology optimization of steel plate shear walls in the moment frames vol.29, pp.6, 2016, https://doi.org/10.12989/scs.2018.29.6.771
- New form of perforated steel plate shear wall in simple frames using topology optimization vol.74, pp.3, 2016, https://doi.org/10.12989/sem.2020.74.3.325