참고문헌
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
- Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5, 69-77.
- Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates", J. Appl. Mech., 51(1), 195-198. https://doi.org/10.1115/1.3167569
- Bouazza, M. and Benseddiq, N. (2015), "Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings", Multidiscipl. Model. Mater. Struct., 11(4), 558-578. https://doi.org/10.1108/MMMS-02-2015-0008
- Bouazza, M., Lairedj, A. Benseddiq, N. and Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126. https://doi.org/10.1016/j.mechrescom.2016.02.015
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Boukhari, A., Ait Atmane, H., Tounsi, A. and Samy, H. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Chikh, A., Bakora, A., Heirache, H. and Adda Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory ", Struct. Eng. Mech., Int. J., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617
- Dawe, D.J. and Roufaeil, O.L. (1982), "Buckling of rectangular Mindlin plates", Comput. Struct., 15(4), 461-471. https://doi.org/10.1016/0045-7949(82)90081-5
- Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
- Fares, M.E. and Zenkour, A.M. (1999), "Buckling and free vibration of nonhomogeneous composite crossply laminated plates with various plate theories", Compos. Struct., 44(4), 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4
- Ferreira, A.J.M. (2005a), "Analysis of composite plates using a layerwise deformation theory and multiquadrics discretization", Mech. Adv. Mater. Struct., 12(2), 99-112. https://doi.org/10.1080/15376490490493952
- Ferreira, A.J.M. (2005b), "Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions", Int. J. Comput. Meth., 2(1), 15-31. https://doi.org/10.1142/S0219876205000314
- Ferreira, A.J.M. and Fasshauer, G.E. (2006), "Computation of natural frequencies of shear deformable beams and plates by a RBF-pseudospectral method", Comput. Meth. Appl. Mech. Eng., 196(1-3), 134-146. https://doi.org/10.1016/j.cma.2006.02.009
- Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higherorder shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B, 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
- Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2004), "Radial basis functions and higher order theories in the analysis of laminated composite beams and plates", Compos. Struct., 66(1-4), 287-293. https://doi.org/10.1016/j.compstruct.2004.04.050
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4265-4278. https://doi.org/10.1016/j.cma.2004.11.004
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hanna, N.F. and Leissa, A.W. (1994), "A higher order shear deformation theory for the vibration of thick plates", J. Sound Vib., 170(4), 545-555. https://doi.org/10.1006/jsvi.1994.1083
- Hassaine Daouadji, T., Hadj Henni, A., Tounsi, A. and Adda Bedia, E.A. (2012), "A new hyperbolic shear deformation theory for bending analysis of functionally graded plates", Model. Simul. Eng., Article ID 159806, 10 p.
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Jones, R.M. (1975), Mechanics of Composite Materials, Hemisphere Publishing Corporation.
- Kant, T. (1982), "Numerical analysis of thick plates", Comput. Methods Appl. Mech. Eng., 31(1), 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. Part II-buckling and free vibration", Compos. Struct., 9(4), 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
- Kim, S.E., Thai, H.T. and Lee, J. (2009), "Buckling analysis of plates using the two variable refined plate theory", Thin-Wall. Struct., 47(4), 455-462. https://doi.org/10.1016/j.tws.2008.08.002
- Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., Int. J., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021
- Leissa, A.W. and Ayoub, E.F. (1988), "Vibration and buckling of simply supported rectangular plate subjected to a pair of in-plane concentrated forces", J. Sound Vib., 127(1), 155-171. https://doi.org/10.1016/0022-460X(88)90356-2
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1996), "Navier's solution for laminated plate buckling with prebuckling in-plane deformation", Int. J. Solid. Struct., 33(13), 1921-1937. https://doi.org/10.1016/0020-7683(95)00130-1
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation. Part 1:Homogeneous plates", J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
- Madenci, E. and Guven, I. (2007), The Finite Element Method and Applications in Engineering Using Ansys, Springer.
- Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B, 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.
- Nakasone, Y., Yoshimoto, S. and Stolarski, T.A. (2006), Engineering Analysis with ANSYS Software, Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Burlington, MA 01803.
- Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93(12), 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028
- Piscopo, V. (2010), "Refined buckling analysis of rectangular plates under uniaxial and biaxial compression", World Academy of Science; Eng. Technol., 46, 554-561.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, CA, USA.
- Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-77.
- Senthilnathan, N.R., Chow, S.T., Lee, K.H. and Lim, S.P. (1987), "Buckling of shear-deformable plates", AIAA J., 25(9), 1268-1271. https://doi.org/10.2514/3.48742
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146. https://doi.org/10.2514/2.1622
- Shimpi, R.P. and Patel, H.G. (2006a), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22-23), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
- Shimpi, R.P. and Patel, H.G. (2006b), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-200. https://doi.org/10.1007/BF01176650
- Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
- Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52, 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
- Whitney, J.M. (1987), "Curvature effects in the buckling of symmetrically-laminated rectangular plates with transverse shear deformation", Compos. Struct., 8(2), 85-103. https://doi.org/10.1016/0263-8223(87)90006-7
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", Trans. ASME, J. App. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
- Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5
- Wu, Z. and Chen, W. (2007), "Thermomechanical buckling of laminated composite and sandwich plates using global-local higher order theory", Int. J. Mech. Sci., 49(6), 712-721. https://doi.org/10.1016/j.ijmecsci.2006.10.006
- Xiang, S. and Kang, G.W. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A/Solid, 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005
- Xiang, S. and Wang, K.M. (2009), "Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric RBF", Thin-Wall. Struct., 47(3), 304-310. https://doi.org/10.1016/j.tws.2008.07.007
- Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011a), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022
- Xiang, S., Jiang, S.X., Bi, Z.Y., Jin, Y.X. and Yang, M.S. (2011b), "A nth-order meshless generalization of Reddy's third-order shear deformation theory for the free vibration on laminated composite plates", Compos. Struct., 93(2), 299-307. https://doi.org/10.1016/j.compstruct.2010.09.015
- Xiang, S., Kang, G.W. and Xing, B. (2012), "A nth-order shear deformation theory for the free vibration analysis on the isotropic plates", Meccanica, 47(8), 1913-1921. https://doi.org/10.1007/s11012-012-9563-0
- Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013), "Natural frequencies of sandwich plate with functionally graded face and homogeneous core", Compos. Struct., 96, 226-231. https://doi.org/10.1016/j.compstruct.2012.09.003
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
- Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
피인용 문헌
- A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
- Compressive buckling analysis of orthotropic composite plates restrained by stringers vol.1074, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1074/1/012073
- Shear buckling analysis of laminated plates on tensionless elastic foundations vol.24, pp.6, 2016, https://doi.org/10.12989/scs.2017.24.6.697
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.369
- A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2016, https://doi.org/10.12989/sem.2017.64.2.145
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.711
- Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.785
- Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2016, https://doi.org/10.12989/anr.2019.7.3.191
- Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory vol.33, pp.2, 2016, https://doi.org/10.12989/scs.2019.33.2.245
- On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
- Elastic buckling strength for steel plates symmetrically strengthened with glass fiber reinforced polymer plates vol.47, pp.3, 2016, https://doi.org/10.1139/cjce-2018-0476
- Experimental and numerical investigation of stiffener effects on buckling strength of composite laminates with circular cutout vol.54, pp.9, 2020, https://doi.org/10.1177/0021998319874101
- Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.083
- Modeling of memory-dependent derivative in a functionally graded plate vol.31, pp.4, 2016, https://doi.org/10.1080/17455030.2019.1606962