Acknowledgement
Supported by : National Natural Science Foundation of China, NSAF of China
References
- Bilasse, M., Azrar, L. and Daya, E.M. (2011), "Complex modes based numerical analysis of viscoelastic sandwich plates vibrations", Comput. Struct., 89(7), 539-555. https://doi.org/10.1016/j.compstruc.2011.01.020
- Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monitor., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
- Chen, G.Y. and Dudek, G. (2009), "Auto-correlation wavelet support vector machine", Image Vision Comput., 27(8), 1040-1046. https://doi.org/10.1016/j.imavis.2008.09.006
- Chen, F.F., Tang, B.P. and Chen, R.X. (2013), "A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm", Measurement, 46(1), 220-232. https://doi.org/10.1016/j.measurement.2012.06.009
- Chen, J.L., Zhang, C.L., Zhang, X.Y., Zi, Y.Y., He, S.L. and Yang, Z. (2015), "Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method", Mech. Syst. Signal Process., 54, 277-292.
- Claypoole, R.L., Davis, G.M., Sweldens, W. and Baraniuk, R. (2003), "Nonlinear wavelet transforms for image coding via lifting", IEEE Trans. Image Process., 12(12), 1449-1459. https://doi.org/10.1109/TIP.2003.817237
- Daubechies, I. (1992), Ten Lectures on Wavelets, SIMA, Philadelphia, PA, USA.
- Fan, W. and Qiao, P.Z. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monitor., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Geronimo, J.S., Hardin, D.P. and Massopust, P.R. (1994), "Fractal functions and wavelet expansions based on several scaling functions", J. Approx. Theory, 78(3), 373-401. https://doi.org/10.1006/jath.1994.1085
- Gouze, A., Antonini, M., Barlaud, M. and Macq, B. (2004), "Design of signal-adapted multidimensional lifting scheme for lossy coding", IEEE Trans. Image Process., 13(12), 1589-1603. https://doi.org/10.1109/TIP.2004.837556
- Hou, Z.M., Xia, H. and Zhang, Y.L. (2012), "Dynamic analysis and shear connector damage identification of steel-concrete composite beams", Steel Compos. Struct., Int. J., 13(4), 327-341. https://doi.org/10.12989/scs.2012.13.4.327
- Hsu, C.W. and Lin, C.J. (2002), "A comparison of methods for multiclass support vector machines", IEEE Trans. Neural Networks., 13(2), 415-425. https://doi.org/10.1109/72.991427
- Hu, Q., He, Z.J., Zhang, Z.S. and Zi, Y.Y. (2007), "Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble", Mech. Syst. Signal Process., 21(2), 688-705. https://doi.org/10.1016/j.ymssp.2006.01.007
- Kapur, J.H. and Kesavan, H.K. (1992), Entropy Optimization Principles with Application, Academic Press, New York, NY, USA.
- Keskes, H., Braham, A. and Lachiri, Z. (2013), "Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM", Elec. Power Syst. Res., 97, 151-157. https://doi.org/10.1016/j.epsr.2012.12.013
- Leng, J.F., Chen, D.H. and Jing, S.X. (2007), "Mine fan intelligent faults diagnosis based on the lifting wavelet packet and RBF neuralnet work", Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, August.
- Li, Z., He, Z.J., Zi, Y.Y. and Jiang, H.K. (2008), "Rotating machinery fault diagnosis using signal-adapted lifting scheme", Mech. Syst. Signal Process., 22(3), 542-556. https://doi.org/10.1016/j.ymssp.2007.09.008
- Liu, Z.W., Cao, H.R., Chen, X.F., He, Z.J. and Shen, Z.J. (2013), "Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings", Neurocomputing, 99, 399-410. https://doi.org/10.1016/j.neucom.2012.07.019
- Meng, L.J., Xiang, J.W., Wang, Y.X., Jiang, Y.Y. and Gao, H.F. (2015a), "A hybrid fault diagnosis method using morphological filter-translation invariant wavelet and improved ensemble empirical mode decomposition", Mech. Syst. Signal Process., 50-51, 101-115. https://doi.org/10.1016/j.ymssp.2014.06.004
- Meng, L.J., Xiang, J.W., Zhong, Y.T. and Song, W.L. (2015b), "Fault diagnosis of rolling bearing based on second generation wavelet denoising and morphological filter", J. Mech. Sci. Technol., 29(8), 3121-3129. https://doi.org/10.1007/s12206-015-0710-0
- Moita, J.S., Araújo, A.L., Martins, P., Mota Soares, C.M. and Mota Soares, C.A. (2011), "Finite element model for damping optimization of viscoelastic sandwich structures", Comput. Struct., 89(21), 1874-1881. https://doi.org/10.1016/j.compstruc.2011.05.008
- Pan, Y.N., Chen, J. and Guo, L. (2009), "Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description", Mech. Syst. Signal Process., 23(3), 669-681. https://doi.org/10.1016/j.ymssp.2008.05.011
- Peng, Z.K. and Chu, F.L. (2004), "Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography", Mech. Syst. Signal Process., 18(2), 199-221. https://doi.org/10.1016/S0888-3270(03)00075-X
- Qu, J.X., Zhang, Z.S., Wen, J.P., Guo, T., Luo, X., Sun, C. and Li, B. (2014), "State recognition of the viscoelastic sandwich structure based on adaptive redundant second generation wavelet packet transform, permutation entropy and wavelet support vector machine", Smart Mater. Struct., 23(8) 085004. https://doi.org/10.1088/0964-1726/23/8/085004
- Shawe-Taylor, J. and Cristianini, N. (2004), Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge, MA, USA.
- Si, Y., Zhang, Z.S., Cheng, W. and Yuan, F.C. (2015), "State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy", Steel Compos. Struct., Int. J., 19(3), 569-583. https://doi.org/10.12989/scs.2015.19.3.569
- Sun, C., Zhang, Z.S., Guo, T., Luo, X., Qu, J.X. and Li, B. (2014a), "A novel manifold-manifold distance with its application to looseness state assessment of viscoelastic sandwich structure", Smart Mater. Struct., 23(6) 065019. https://doi.org/10.1088/0964-1726/23/6/065019
- Sun, H.L., He, Z.J., Zi, Y.Y., Yuan, J., Wang, X.D., Chen, J.L. and He, S.L. (2014b), "Multiwavelet transform and its applications in mechanical fault diagnosis-A review", Mech. Syst. Signal Process., 43(1), 1-24. https://doi.org/10.1016/j.ymssp.2013.09.015
- Sweldens, W. (1998), "The lifting scheme: a construction of second generation wavelets", SIAM J. Math. Anal., 29(2), 511-546. https://doi.org/10.1137/S0036141095289051
- Vapnik, V.N. (2000), The Nature of Statistical Learning Theory, Springer, New York, NY, USA.
- Woo, C.S., Choi, S.S., Lee, S.B. and Kim, H.S. (2010), "Useful lifetime prediction of rubber components using accelerated testing", IEEE Trans. Reliab., 59(1), 11-17. https://doi.org/10.1109/TR.2010.2042103
- Xiang, J.W., Matsumoto, T., Long, J.Q., Wang, Y.X. and Jiang, Z.S. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., Int. J., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335
- Xiang, J.W., Nackenhorst, U., Wang, Y.X., Jiang, Y.Y., Gao, H.F. and He, Y.M. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., Int. J., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
- Xiang, J.W., Zhong, Y.T. and Gao, H.F. (2015), "Rolling element bearing fault detection using PPCA and spectral kurtosis", Measurement, 75, 180-191. https://doi.org/10.1016/j.measurement.2015.07.045
- Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Process., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Yan, R.Q., Gao, R.X. and Chen, X.F. (2014), "Wavelets for fault diagnosis of rotary machines: a review with applications", Signal Process., 96(Part A), 1-15. https://doi.org/10.1016/j.sigpro.2013.04.015
- Zhang, X.W., Gao, R.X., Yan, R.Q, Chen, X.F., Sun, C. and Yang, Z.B. (2016), "Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization", J. Sound Vib., 375, 200-216. https://doi.org/10.1016/j.jsv.2016.04.018
- Zhang, L., Zhou, W.D. and Jiao, L.C. (2004), "Wavelet support vector machine", IEEE Trans. Syst. Man Cybern. B., 34(1), 34-39. https://doi.org/10.1109/TSMCB.2003.811113
Cited by
- The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation vol.24, pp.4, 2016, https://doi.org/10.12989/scs.2017.24.4.481
- Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.127
- A novel aging state recognition method of a viscoelastic sandwich structure based on permutation entropy of dual-tree complex wavelet packet transform and generalized Chebyshev support vector machine vol.19, pp.1, 2016, https://doi.org/10.1177/1475921719838342
- Application of Support Vector Machine-Based Classification Extremum Method in Flexible Mechanism vol.12, pp.4, 2016, https://doi.org/10.1115/1.4046210
- An optimized machine learning based moment-rotation analysis of steel pallet rack connections vol.79, pp.4, 2021, https://doi.org/10.12989/sem.2021.79.4.499