DOI QR코드

DOI QR Code

Convergence performance comparison using combination of ML-SVM, PCA, VBM and GMM for detection of AD

알츠하이머 병의 검출을 위한 ML-SVM, PCA, VBM, GMM을 결합한 융합적 성능 비교

  • Alam, Saurar (Department of Information and Communication Engineering, Chosun University) ;
  • Kwon, Goo-Rak (Department of Information and Communication Engineering, Chosun University)
  • Received : 2016.05.26
  • Accepted : 2016.08.08
  • Published : 2016.08.31

Abstract

Structural MRI(sMRI) imaging is used to extract morphometric features after Grey Matter (GM), White Matter (WM) for several univariate and multivariate method, and Cerebro-spinal Fluid (CSF) segmentation. A new approach is applied for the diagnosis of very mild to mild AD. We propose the classification method of Alzheimer disease patients from normal controls by combining morphometric features and Gaussian Mixture Models parameters along with MMSE (Mini Mental State Examination) score. The combined features are fed into Multi-kernel SVM classifier after getting rid of curse of dimensionality using principal component analysis. The experimenral results of the proposed diagnosis method yield up to 96% stratification accuracy with Multi-kernel SVM along with high sensitivity and specificity above 90%.

구조적 MRI 영상은 여러 단 변량과 다변량 방법을 위해 그레이 메터 (GM), 화이트 메터 (WM), 뇌척수액 (CSF) 세션화 과정을 하고 난후 형태계측학적 특징을 추출하기 위해 사용한다. 새로운 접근 방법은 매우 가벼운 알츠하이머 병에서 가벼운 알츠하이머병의 진단을 위해 적용된다. 간이정신상태검사에 따른 형태계측학적 특징과 가우시안 복합 모델 파라미터를 결합하여 정상인으로부터 알츠하이머 병 환자로 분류하는 방법을 제안한다. 결합한 특징은 주성분 분석 기법을 이용한 고차원의 저주를 제거한 후 다중 커널 SVM 분류기에 공급한다. 제안한 진단 방법의 실험적 결과는 90%이상의 특성도와 고민감도에 따라 다중 커널 SVM을 가진 층화 정확도가 96%까지 최대 산출한다.

Keywords

References

  1. Ramesh Kumar Lama and G.-R. Kwon, "Multiresolution Non-Local Means Filtering for Image Denoising," The Journal of Korean Institute of Next Generation Computing, Vol. 11, No. 5, pp. 17-23, Oct. 2015.
  2. Jeongjin Lee, Che Hwan Seo, Juneseuk Shin, and Yeong-Gil Shin, "Accurate Liver Vascular Structure Analysis in Abdominal CT Images," The Journal of Korean Institute of Next Generation Computing, Vol. 11, No. 2, pp. 41-48, Apr. 2015.
  3. M. Chupin, E. Gerardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehericy, H. Benali, L. Garnero, and O. Colliot, "Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI, Hippocampus," Vol. 19, pp. 579-587, 2009. https://doi.org/10.1002/hipo.20626
  4. P. Padilla, M. Lopez, M. Gorriz, J. Ramirez, D.Salas-Gonzalez, I.Alvarez, "NMF-SVM Based CAD Tool Applied to Functional Brain Images for the Diagnosis of Alzheimer's Disease," IEEE Transactions on Medical Imaging, Vol. 31, Issue 2, pp. 207-216, Feb. 2012. https://doi.org/10.1109/TMI.2011.2167628
  5. M. Lopez, J. Ramirez, J. M. Gorriz, D. Salas Gonzalez, I. Alvarez, F. Segovia, and C. G. Puntonet, "Automatic tool for Alzheimer's disease diagnosis using PCA and Bayesian classification rules," Electronics Letters, Vol. 45, Issue 8, pp. 389 - 391, Apr. 2009. https://doi.org/10.1049/el.2009.0176
  6. R. Mahmood, and B. Ghimire, "Automatic detection and classification of Alzheimer's Disease from MRI scans using principal component analysis and artificial neural networks," Systems, Signals and Image Processing (IWSSIP), 20th IEEE International Conference, pp. 133-137, 2013.
  7. Wenlu Yanga, Ronald L. M. Luib, Jia-Hong Gaoc, Tony F. Chand, Shing-Tung Yaub, Reisa A. Sperlinge, and Xudong Huangf, "Independent Component Analysis-Based Classification of Alzheimer's Disease MRI Data," Journal of Alzheimer's Disease 24, pp. 775-783, 2011. https://doi.org/10.3233/JAD-2011-101371
  8. Shih-Ting Yang, Jiann-Der Lee, Tzyh-Chyang Chang, Chung-Hsien Huang, Jiun-JieWang, Wen-Chuin Hsu, Hsiao-Lung Chan, Yau-Yau Wai, and Kuan-YiLi, "Discrimination between Alzheimer's Disease and Mild Cognitive Impairment Using SOM and PSO-SVM," Computational and Mathematical Methods in Medicine," Vol. 2013, Article ID 253670, 10 pages, 2013.
  9. Savio A, and Garcia-Sebastian M, "Classification results of artificial neural networks for Alzheimer's disease detection," Lect. Notes Comput. Sci., Vol. 5788, pp. 641-648, 2009.
  10. Darya Chyzhyk, Alexandre Savio, "Feature extraction from structural MRI images based on VBM: data from OASIS database", University of the Basque Country, Internal research publication.
  11. V. Kilaru, M. Amin, F. Ahmad, P. Sevigny, and D. DiFilippo, "Gaussian mixture modeling approach for stationary human identification in through-the-wall radar imagery," Journal of Electronic Imaging, Vol. 24, No. 1, Article ID 013028, 2015.
  12. G.R.G. Lanckriet, N. Cristianini, P. Bartlett, LE. Ghaoui, MI. Jordan, Learning the Kernel Matrix with Semidefinite Programming, Journal of Machine Learning Research 5 pp. 27-72, 2005.
  13. GRG. Lanckriet, T. De Bie, N. Cristianini, MI. Jordan, and WS. Noble, "A statistical framework for genomic data fusion," Bioinformatics, Vol. 20, pp. 2626-2635, 2004. https://doi.org/10.1093/bioinformatics/bth294
  14. F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan, "Multiple kernel learning, conic duality, and the SMO algorithm," Proceedings of 21st International Conference of Machine Learning, 2004.
  15. M. Grant and S. Boyd, CVX, "Matlab software for disciplined convex programming," version 2.0 beta, 2013.
  16. C.Chang and C.-J. Lin, "LIBSVM: a library for support vector machines," 2001.