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Abstract: The Exponentiated Quasi Lindley (EQL) distribution which is an extension of the 
quasi Lindley Distribution is introduced and its properties are explored. This new distribution 
represents a more flexible model for the lifetime data. Some statistical properties of the 
proposed distribution including the shapes of the density and hazard rate functions, the 
moments and moment generating function, the distribution of the order statistics are given. 
The maximum likelihood estimation technique is used to estimate the model parameters and 
finally an application of the model with a real data set is presented for the illustration of the 
usefulness of the proposed distribution. 
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1. INTRODUCTION  
 
Lindley distribution was proposed by Lindley (1958) in the context of Bayesian statistics, as a 
counter example of fiducially statistics. However, due to the popularity of the exponential 
distribution in statistics especially in reliability theory, Lindley distribution has been 
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overlooked in the literature. Recently, many authors  have  paid  great  attention to the Lindley 
distribution as a lifetime model. From different point of view, Ghitany et al. (2008) showed 
that Lindley distribution is a better lifetime model than exponential  distribution. More so, in 
practice, it has been observed that many real life system models have increasing  failure rate 
with time.Krishna and Kumar (2011) estimated the parameter of Lindley distribution with 
progressive Type-II censoring scheme. They also showed that it may fit better thanexponential, 
lognormal and gamma distributions in some real life situations. 
Lindley (1958), introduced a one- parameter distribution known as Lindley distribution, given 
by its probability density function  
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the cumulative distribution function (cdf) of Lindley distribution is obtained as 
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Rama and Mishra (2013) introduced quasi Lindley distributionof which the Lindley 
distribution (LD) is a particular case. They studied several properties of the QLD, and shown 
that the QLD is more flexible than Lindley and exponential distributions. Quasi flexible than 
Lindley and exponential distributions. Quasi probability density function (p.d.f)       

( , , ) ( )  ;  0, 0, 1.
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+
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It can easily be seen that at θα = , the QLD  (3) reduces to the Lindley distribution (1958) 
with probability density function and at  0α = , it reduces to the gamma distribution with 
parameters  ),2( θ . The p.d.f. (3) can be shown as a mixture of exponential )(θ  and gamma

),2( θ  distributions as follows 
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The cumulative distribution function (cdf) of  QLD    is obtained as 

( , , ) 1 1 , 0, 0, 1,
1
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whereθ   is scale parameter.  
The exponentiated distributions have been widely studied in statistics and numerous authors 
have developed various classes of these distributions. A good review of some of these models 
is presented by Pham and Lai (2007). The exponentiation of distributions is a mechanism that 
makes the model more flexible, Nadarajah and Kotz (2006) introduce four more 
exponentiated type distributions: the exponentiated Gamma, exponentiated Weibull, 
exponentiated Gumbel and the Exponentiated Fréchet distribution. We also, several authors 
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presented exponentiated distributions, such as Mudholkar and Srivastava (1993) with the 
exponentiation of the Weibull distribution. Elbatal (2011) introduced Exponentiated modified 
Weibull distribution. 
This paper offers new distribution with three parameters called exponentiated quasi Lindley 
distribution, this article is organized as follows. In Section 2, we define the Exponentiated 
Quasi Lindley distribution, the expansion for the cumulative and density functions of the EQL 
distribution and some special cases. Quantile  function, moments, moment generating function 
are discussed in Section 3. In Section 4 included the distribution of the order statistics.  
Maximumlikelihood estimation is performed in Section 5Finally, some applications of the 
distribution in section 6. 
 
 

2. EXPONENTIATED QUASI LINDLEY DISTRIBUTION 

 
In this section, we introduce the three − parameter Exponentiated Quasi Lindley (EQL) 
distribution, the cdf of the EQL distribution can be written as  
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The corresponding pdf, survival function, hazard function and reverse hazard rate function 
respectively, 
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Figures 1, 2, 3, 4 and 5 illustrate some of the possible shapes of the pdf, cdf, survival function, 
hazard rate function and reversed hazard rate function of the EQL distribution for selected 
values of the parameters αθ ,  and ,β  respectively.  
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Figure 1. The pdf of EQL distribution for various values of parameters 

 
 

 

 
 

Figure 2. The cdf of EQL distribution for various values of parameters 
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Figure 3.The survival function of EQL distribution for various values of parameters 

 
 

 
Figure 4.The hazard rate function of EQL distribution for various values of parameters 
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Figure 5.The reversed hazard rate function of EQL distribution for various values of 

parameters 
 

 
Special Cases of the EQL Distribution 
The Exponentiated Quasi Lindley is very flexible model that approaches to different 
distributions when its parameters are changed. The EQL  distribution contains as special- 
models the following well known distributions. If X  is a random variable with cdf of the  
EQL distribution, then we have the following cases. 
-If 1=β , then we have Quasi Lindley distribution which is introduced by Rama and  
Mishra(2013). 

- If  θα =   we get the Generalized Lindley distribution which is introduced by Nadarajah  et 
al . (2011). 

- If  0=α   we get the generalized gamma distribution with parameters ),2( θ . 
- If  1=β , and θα =   we get the Lindley distribution Lindley (1958). 
- If  1=β , and θα =   we get the gamma distribution with parameters ).,2( θ  
 
2.1 Expansion for the cumulative and density functions. 
 
In this subsection we present some representations of cdf, pdf of exponentiated quasi Lindley 
distribution. The mathematical relation given below will be useful in this subsection. By using 
the generalized binomial theorem if β  is a positive and  1<z  , then  
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3. STATISTICAL PROPERTIES 

 
This section is devoted to studying statistical properties of the EQL distribution, specifically 
quantile function, moments, and moment generating function. 
 
3.1 Quantile function 
 
The EQL quantile function, say =)(uQ )(1 uF − , is straightforward to be computed by 
inverting (2.1), we have 
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We can easily generate X  by taking u  as a uniform random variable in )1,0( . 
 
3.2 Moments 
In this subsection we discuss the  rth   non-central moment for  EQL   distribution. Moments 
are necessary and important in any statistical analysis, especially in applications. It can be 
used to study the most important features and characteristics of a distribution (e.g., tendency, 
dispersion, skewness and kurtosis). 
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Theorem 1. 
If  X   has ( , )EQL x ϕ ),,(, βθαφ = then the thr  non-central moment of X is given by the 
following 
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Proof. 
Let  X   be a random variable EQL distribution with density function from Equation (6). The  

thr   non-central moment of the  EQL   distribution is given by 
( 1)
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Which completes the proof . 
 
Substitution in the Equation (15) by 1,2,3,4 we get the first four moments of  as: 
at 1,2,3	 	4 
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3.3 Moment generating function 
 
In this subsection we derived the moment generating function of EQL distribution. 
 
Theorem 2. If X has EQL distribution, then the moment generating function )(tM X  has 
the following form 
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Proof. 
We start with the well known definition of the moment generating function given by 
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This completes the proof. 
 
In the same way, the characteristic function of the EQL distribution becomes 
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Laplace and Fourier transforms as calculated as: 
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4. DISTRIBUTION OF THE ORDER STATISTICS 
 
In this section, we derive the pdfs of the thj  order statistic of the EQL distribution, also, the 
first, largest and joint of order statistic are obtained .The distribution of the  thr    moment of 
the thj order statistic are presented. 
Let 	 : : ⋯ :  denote the order statistics obtained from this sample. The 
probability density function of  the thj order statistic, say ),(: φxf nj   is given by  

[ ] [ ]1
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where ),( φxf  and ),( φxF  are the pdf and cdf of the EQL distribution given by Equation (6) 
and Equation (5), respectively, and B (.,.)  is the beta function, since 1<),(<0 φxF , for 

0>x , by using the binomial series expansion of [ ] jnxF −− ),(1 φ , we get 
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substituting from Equation (5) and Equation (6) in Equation (20), we can express the thk  
ordinary moment of the thr  order statistics nrX :   say )( :

k
nrXE  as a liner combination of the 

thk  moments of the EQL distribution with different shape parameters.  
Therefore, the measures of skewness and kurtosis of the distribution of nrX :  can be calculated.                                  
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The probability density function  

(1) (1)( )Xf x   of the first order statistic is given by 
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The probability density function  )(
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The joint p.d.f of  and for is given by: 
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The thr moment of the thj order statistic is denoted by: 
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xjr r

j j j j j

n j

x
j j

x x enE X x f x dx e x
j n j

e x dx

(25) 
By using the fact that  

( ) ( )
( ) ( )

0
1 1 1 ( 1) 1 1 .

1 1

β β
θ θθ θ

α α

−
∞

− −

=

⎡ ⎤ −⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− − + = − − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎝ ⎠⎣ ⎦
∑j j

n j u
x xu

j j
u

n j
e x e x

u
 

(26) 

Substituting from Equation (4.9) into Equation (4.8), we get 

( )
0

( ) 1

0

!( ) ( 1)
( 1)!( )!(1 )

( ) 1 1 .
1

β
θ θ

βθ
α

θα θ
α

∞

=

+ −∞
− −

−⎛ ⎞
= − ⎜ ⎟− − + ⎝ ⎠

⎡ ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

∑

∫

r u
j

u

j u
r x x

n jnE X
uj n j

x x e e x dx
      

(27) 

Applying the binomial expansion in last term of Equation (4.10), we have 
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( )

( ) ( ) ( )
0 0 0

( 1)
( ) ( )

0

(u ) 1!( ) ( 1) ( )
( 1)!( )!(1 )

1
1

(u ) 1! ( 1)
( 1)!( )!(1 ) 1

θ

ββθ α θ
α

θ
α

ββθ θ
α α

∞∞ ∞
+

= =

− +

+

=

− + −⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟− − + ⎝ ⎠⎝ ⎠

⎛ ⎞× +⎜ ⎟+⎝ ⎠
− + −⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟⎜− − + +⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∑∑ ∫

∑

j

r u z r
j j j

u z

z
z x

j j

z
u z

t

n j jnE X x x
u zj n j

e x dx

n j j zn
u z tj n j

( )

0 0

( 1)
( ) ( ) ( )

0

( ) θα θ

∞ ∞

= =

∞
− ++

⎟

× +

∑∑

∫ j

t

u z

z xr t
j j jx x e dx

( )

( ) ( )

( 1)
( ) ( ) ( )

0 0 0 0

( 1) ( 1)1
( ) ( ) ( ) ( )

0 0 0 0 0 0

1 2
0 0 0

( )

( 1) ( 2)
[( 1) ] [( 1) ]

θ

θ θ

α θ

α θ

α θ
θ θ

∞∞ ∞
− ++

= = =

∞ ∞ ∞∞ ∞
− + − ++ + +

= = =

∞ ∞

+ + + +
= = =

= +

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
Γ + + Γ + +

= +
+ +

∑∑∑ ∫

∑∑∑ ∫ ∫ ∫

∑∑∑

j

j j

z
z xr t

j j j
u z t

z
z x z xr t r t

j j j j
u z t

z

r t r t
u z t

M x x e dx

M x e dx x e dx

r t r tM
z z

.
⎡ ⎤
⎢ ⎥
⎣ ⎦                 

(28) 

where  
(u ) 1! ( 1)

( 1)!( )!(1 ) 1

t
u z n j j znM

u z tj n j
ββθ θ

α α
+ − + −⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − + +⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

 
 

5. ESTIMATION AND INFERENCE 
 
In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of 
the  EQL  distribution from complete samples only. Let  nXXX ,...,, 21   be a random sample 
of size n from ( , ).ϕEQL x The likelihood function for the vector of parameters  

),,( βθαφ =  can be written as  

1

1

1 1 1( , ) ( , ) ( ) 1 1 .
1 1

β
θ θ θβθϕ α θ

α α
=

−
− ∑ −

= = =

⎡ ⎤⎡ ⎤⎛ ⎞Φ = Π = Π + Π − +⎜ ⎟ ⎢ ⎥⎢ ⎥+ +⎝ ⎠ ⎣ ⎦⎣ ⎦

n

i
i i

n
x xn n n i

i i i i i i
xL x f x x e e (29) 

Taking the log-likelihood function for the vector of parameters  ),,( βθαφ =   we get 
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1

1 1

log  log log log(1 ) log( )

( 1) log 1 1  . 
1

θ

β θ α α θ

θθ β
α

=

−

= =

= + − + + ∑ +

⎡ ⎤⎡ ⎤− ∑ + − ∑ − +⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦
i

n

i
i

n n
x i

i
i i

L n n n x

xx e
                       

(30) 

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood 
equations obtained by differentiating Equation (30). The components of the score vector are 
given by 

1

log  log 1 1  ,
1

θ θ
β β α

−

=

⎡ ⎤∂ ⎡ ⎤= +∑ − +⎢ ⎥⎢ ⎥∂ +⎣ ⎦⎣ ⎦
i

n
x i

i

xL n e
                                                      

(31) 

   

1

1 1 1
1

1(1 )( )log  1( 1)   ,
( ) 1 1

θ θ
α

θθ
α

αβ
θ θ α θ

−
+

−= = =
+

+ −∂ += + ∑ −∑ + − ∑
∂ + ⎡ ⎤⎡ ⎤− +⎣ ⎦⎣ ⎦

i i

ii

x x
n n n i

i
i xxi i ii

x exL n x
x e

        

(32) 

and 

21 1
1

log  1 ( 1)    ,
1 ( ) ( 1) 1 1

θ

θθ
α

θβ
α α α θ α

−

−= =
+

∂ −
= −∑ + − ∑

∂ + + ⎡ ⎤⎡ ⎤+ − +⎣ ⎦⎣ ⎦

i

ii

xn n
i

xxi ii

x eL n
x e

       (33) 

We can find the estimates of the unknown parameters by maximum likelihood method by 
setting these above non-linear Equations (31), (32) and (33)to zero and solve them 
simultaneously. Therefore, we have to use mathematical package to get the MLE of the 
unknown parameters. 
For the observed information matrix of the parameters ( , ,α θ β ). we find the second partial 
derivatives of  L  as 

22

2 2 2 2
1 1

log 1 ( 1) ,
(1 ) ( )

n n
i i i

i ii i

C A DL n
x A

β
α α α θ= =

−∂
= + − −

∂ + +∑ ∑
 

2

2 2

log ,L n
β β

∂ −
=

∂  
2 22

2 2 2 2
1 1

( )log ( 1) ,
( )

n n
i i i i i i i

i ii i i

x T T K F H FL n
x A A

β
θ θ α θ= =

⎧ ⎫+ − −∂ −
= + + − +⎨ ⎬∂ + ⎩ ⎭

∑ ∑
 

2

1

log ,
n

i

i i

DL
Aα β =

∂
=

∂ ∂ ∑
 

2

2 2
1 1

( )log ( 1) ,
( )

n n
i i i i i i

i ii i i

x G D D F HL
x A A

β
α θ α θ= =

⎧ ⎫− +∂
= − + − −⎨ ⎬∂ ∂ + ⎩ ⎭
∑ ∑

 



 
 
 
 
 I. Elbatal, L. S. Diab, M. Elgarhy 15

2

1

log ,
n

i i

i i

F HL
Aθ β =

−∂
=

∂ ∂ ∑
 

where 

3 2

1 1 , 1 1 1 ,
1 1

2 , .
(1 ) (1 )

i i

i i

x x
i i i i

x x
i i i i

A e x B e x

C x e D x e

β
θ θ

θ θ

θ θ
α α

θ θ
α α

− −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + = − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

= =
+ +  

2

1 11 , , .
1 (1 ) (1 )

i i ix x x
i i i i i i iF x e x H x e G x eθ θ θθ

α α α
− − −⎛ ⎞= + = =⎜ ⎟+ + +⎝ ⎠  

2
2 211 , .

1 1
i ix x

i i i i iK x e x T x eθ θθ
α α

− −⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠  
where 

2 2 2 2 2 2

2 2 2= , = , = , = , = , = .L L L L L LV V V V V Vαα θθ ββ αθ βα βθα θ β α θ β α β θ
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

The inverse dispersion matrix is given by 
ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ

αα αθ αβ

θα θθ θβ

βα βθ ββ

α α
θ θ

ββ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∼

V V V

N V V V

V V V

                                          (33) 

1 = .
αα αθ αβ

θα θθ θβ

βα βθ ββ

−

⎡ ⎤
⎢ ⎥− ⎢ ⎥
⎢ ⎥⎣ ⎦

V V V
V E V V V

V V V
                                                        (34) 

By solving this inverse dispersion matrix these solutions will yield      asymptotic variance 
and covariances of these ML estimators for α̂ , θ̂   and β̂  using (5.6), we approximate 

)%100(1 γ−  confidence intervals for ,α θ and β are determined ,respectively, as    
  

2 2 2

ˆ ˆˆ ˆ ˆˆ ,  andγ αα γ θθ γ ββα θ β± ± ±z V z V z V  

where γz  is the upper theγ100  percentile of the standard normal distribution. Using 
MATHCAD we can easily compute the Hessian matrix and its inverse and asymptotic 
confidence intervals. Tables 1 represent the mean square error for some values of 
theparameters. 
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Table 1.Mean square errors of the MLEs 

EQLD( , , ) ( ) ( ) ( )
15 0.0923 0.3452 0.3344
25 0.0811 0.2545 0.1385
35 0.0423 0.2354 0.0955

EQLD(0.85,1.25,1.5) 45 0.0350 0.2016 0.0868
55 0.0245 0.1635 0.0805
65 0.0231 0.1396 0.0579
75 0.0185 0.1177 0.0452

15 0.8493 0.

n MSE MSE MSEα θ β α θ β

1387 0.4542
25 0.7371 0.0899 0.1769
35 0.4760 0.06 0.0737

EQLD(2.0,1,1.25) 45 0.4642 0.0458 0.0613
55 0.4267 0.0428 0.0583
65 0.4141 0.0391 0.0536
75 0.1944 0.0345 0.0409

15 0.4178 0.2763 0.3959
25 0.4063 0.2028 0.2589
35 0.1859 0.1585 0.1163

EQLD(1.5,1.75,1.25) 45 0.1410 0.1377 0.0944
55 0.1311 0.120 0.0763
65 0.1095 0.1081 0.0584
75 0.0823 0.0943 0.0408

 

 
 
We noticed from the above Table 1 that all MSEs decrease as the sample size increases, while 
they increase with increasing of the true parameter. 
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6.  APPLICATIONS 
 

In this section, we use two real data sets to show that the exponentiated quasi Lindley 
distribution can be a better model than one   based on the Lindley distribution. 

 
Data set 1. The following data represent the survival times (in days) of 72 guinea pigs 
infected with virulent tubercle bacilli, observed and   reported by Bjerkedal (1960). The data 
are as follows:                
0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 
1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 
1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 
2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 
4.32, 4.58, 5.55. 
 
Data set 2.The data set is obtained from Smith and Naylor (1987). The data are the strengths 
of 1.5 cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately, 
the units of measurement are not given in the paper. The data set is                             
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 
1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 
1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 
1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89. 
 
In order to compare the three distribution models, we consider criteria like 2ln L− , AIC 
(Akaike information criterion), CAIC (Corrected Akaike information criterion), BIC 
(Bayesian information criterion) and K-S (Kolmogorov-Smirnov test) for the data set. The 
better distribution corresponds to smaller 2ln L− , AIC and CAIC values:                                 

2 ( 1)= 2 2 ln , = ,
1

k kAIC k L CAIC AIC
n k

+
− +

− −
 

= *ln( ) 2 ln   and = | ( ) ( ) |sup n
x

BIC k n L K S F x F x− − −
 

where xix

n

i
n I

n
xF ≤∑

1=

1=)(  is empirical distribution function, )(xF  is comulative distribution 

function, k  is the number of parameters in the statistical model, n  the sample size and . 
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Table 2. AIC, CAIC, BIC and K-S of the models based on data set 1  

  
Table 3. AIC, AICC, BIC and K-S of the models based on data set 2  

 
Tables 2 and 3 show the values of 2 ln( ),L−  AIC, AICC,  BIC and K-S values for data set 1 
and 2. The values in tables 1 and 2, indicate that the exponentiated quasi Lindley distribution 
is a strong competitor to other distributions used here for fitting data set 1 and data set 2. 
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