DOI QR코드

DOI QR Code

Hydrocarbon-Organic Composite Membranes for Improved Oxidative Stability for PEMFC Applications

연료전지용 탄화수소 전해질 막의 산화안정성 향상을 위한 유기물 복합막의 제조 및 특성 분석

  • Park, Satbyul (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Hyejin (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
  • 박샛별 (한국에너지기술연구원 연료전지연구실) ;
  • 이혜진 (한국에너지기술연구원 연료전지연구실) ;
  • 배병찬 (한국에너지기술연구원 연료전지연구실)
  • Received : 2016.04.26
  • Accepted : 2016.05.03
  • Published : 2016.05.31

Abstract

In order to mitigate oxidative degradation of polymer membrane during fuel cell operation, an organic radical quencher was introduced. Rutin was selected as a radical quencher and mixed with sulfonated poly(arylene ether sulfone) to prepare composite membrane. Physicochemical properties of the composite membranes such as water uptake and proton conductivity were characterized. Hydrogen peroxide exposure experiment, which can mimic accelerated oxidative stability test during fuel cell operation, was adopted to evaluate the oxidative stability of the membranes. The composite membranes containing Rutin showed similar proton conductivity and enhanced oxidative stability compared to pristine ones.

양이온 교환막 연료전지 운전 중에 발생하는 하이드록시 라디칼에 의한 전해질 막의 산화분해를 효과적으로 방지하기 위해 유기물 라디칼냐��쳐를 도입하였다. 술폰화 폴리아릴렌에테르술폰 고분자를 이용하여 폴리페놀 화합물의 일종인 루틴을 도입하여 복합막을 제조하였고, 제조된 고분자 전해질 복합막은 함수율 및 이온전도도의 측정을 통하여 루틴이 전해질 막의 물리화학적 성질에 미치는 영향에 대해서 조사하였다. 실제 연료전지 운전과 유사한 조건을 구현할 수 있는 과산화수소 폭로 가속화 평가장치를 이용하여 전해질 복합막의 산화안정성을 평가하였다. 루틴을 함유한 고분자 전해질 복합막은 이온전도도가 유지되면서 산화안정성이 향상된 결과를 보여주었다.

Keywords

References

  1. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, 'Alternative polymer systems for proton exchange membranes (PEMs)', Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  2. M.-S. Shin, and J.-S. Park, 'Preparation and characterization of Nafion composite membranes containing 1-ethyl-3-methylimidazolium tetracyanoborate', J. Kor. Electrochem. Soc., 15, 35 (2012). https://doi.org/10.5229/JKES.2012.15.1.035
  3. H. Zhang, and P. K. Shen, 'Recent development of polymer electrolyte membranes for fuel cells', Chem. Rev., 112, 2780 (2012). https://doi.org/10.1021/cr200035s
  4. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, 'High temperature proton exchange membranes based on polybenzimidazoles for fuel cells' Prog. Polym. Sci., 34, 449 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003
  5. B. Bae, T. Yoda, K. Miyatake, H. Uchida, and M. Watanabe, 'Proton-Conductive Aromatic Ionomers Containing Highly Sulfonated Blocks for High-Temperature-Operable Fuel Cells', Angew. Chem. Int. Ed., 49, 317 (2010). https://doi.org/10.1002/anie.200905355
  6. J. Ahn, H. Lee, T. H. Yang, C. S. Kim, and B. Bae, 'Synthesis and characterization of multiblock sulfonated poly (arylene ether sulfone) membranes with different hydrophilic moieties for application in polymer electrolyte membrane fuel cell', J. Polym. Sci. A Polym. Chem., 52, 2947 (2014). https://doi.org/10.1002/pola.27330
  7. E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, 'Degradation study of MEA for PEMFCs under low humidity conditions', Electrochem. Solid State Lett., 7, A209 (2004). https://doi.org/10.1149/1.1739314
  8. E. Endoh, 'Highly durable MEA for PEMFC under high temperature and low humidity conditions', ECS Trans., 3, 9 (2006).
  9. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, 'Scientific aspects of polymer electrolyte fuel cell durability and degradation', Chem. Rev., 107, 3904 (2007). https://doi.org/10.1021/cr050182l
  10. Y. Xue, Q. Luan, D. Yang, X. Yao, and K. Zhou, 'Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles', J. Phys. Chem. C, 115, 4433 (2011). https://doi.org/10.1021/jp109819u
  11. H. Lee, M. Han, Y.-W. Choi, and B. Bae, 'Hydrocarbonbased polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability', J. Power Sources, 295, 221 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.001
  12. M. Danilczuk, S. Schlick, and F. D. Coms, 'Cerium (III) as a stabilizer of perfluorinated membranes used in fuel cells: in situ detection of early events in the ESR resonator', Macromolecules, 42, 8943 (2009). https://doi.org/10.1021/ma9017108
  13. O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, 'The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid', Free Radic. Biol. Med., 6, 593 (1989). https://doi.org/10.1016/0891-5849(89)90066-X
  14. F. Regoli, and G. W. Winston, 'Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals', Toxicol. Appl. Pharmacol., 156, 96 (1999). https://doi.org/10.1006/taap.1999.8637
  15. D. Bagchi, A. Garg, R. Krohn, M. Bagchi, M. Tran, and S. Stohs, 'Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro', Res. Commun. Mol. Pathol. Pharmacol., 95, 179 (1997).
  16. G. Burton, and K. Ingold, 'Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro', Am. Chem. Soc., 103, 6472 (1981). https://doi.org/10.1021/ja00411a035
  17. I. B. Afanas' ev, A. I. Dcrozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch, 'Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation', Biochem. Pharmacol., 38, 1763 (1989). https://doi.org/10.1016/0006-2952(89)90410-3
  18. S. R. Husain, J. Cillard, and P. Cillard, 'Hydroxyl radical scavenging activity of flavonoids', Phytochemistry, 26, 2489 (1987). https://doi.org/10.1016/S0031-9422(00)83860-1
  19. J. A. Vinson, Y. A. Dabbagh, M. M. Serry, and J. Jang, 'Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease', J. Agric. Food Chem., 43, 2800 (1995). https://doi.org/10.1021/jf00059a005
  20. H. Lee, Y.-W. Choi, T.-H. Yang, and B. Bae, 'Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC', J. Kor. Electrochem. Soc., 17, 44 (2014). https://doi.org/10.5229/JKES.2014.17.1.44