Abstract
The demands for photovoltaic systems on a large scale have grown dramatically and require new technologies to get the high efficiency and reliable operations of power conversion systems. These needs can be realized by the cost-effective and high performance digital revolutions and faster semiconductor switching devices. However, the new power systems have been more sophisticated and their reliability becomes critical issues. In this paper, a new fault-tolerance power conversion scheme for the photovoltaic systems is proposed. The proposed fault-tolerant scheme is able to supply energy from solar panels to loads intermittently in spite of a front boost converter open failure, and its voltage and current controllers are designed to improve the transient performance by using an average model design scheme. The proposed approach is verified both by simulations. The results will enable more timely and wide usage of alternative/renewable energy systems resulting in increased energy security.