References
- Ji-Ae Park, Jang-Mook Kim, Ho-Sung Lee, He-Jin Lee, “Big data study about the effects of weather factors on food poisoning incidence,” Journal of Digital Convergence, Vol. 14, No. 3, pp. 319-327, 2016. https://doi.org/10.14400/JDC.2016.14.3.319
- Jang-Mook Kim, Jung-Hwan Cho, Byul Kim, “Correlation between meteorological factors and hospital power consumption,” Journal of Digital Convergence, Vol. 14, No. 6, pp. 457-466, 2016. https://doi.org/10.14400/JDC.2016.14.6.457
- Moo-Hun Lee, Min-Gyu Kim, “Meteorological information analysis algorithm based on weight for outdoor activity decision-making,” Journal of Digital Convergence, Vol. 14, No. 3, pp. 209-217, 2016. https://doi.org/10.14400/JDC.2016.14.3.209
- Young-Suk Chung, Rack-Koo Park, Jin-Mook Kim, “Study on predictive modeling of incidence of traffic accidents caused by weather conditions,” Journal of the Korea Convergence Society, Vol. 5, No. 1, pp. 9-15, 2014. https://doi.org/10.15207/JKCS.2014.5.1.009
- WMO, "Guidelines on quality control procedures for data from automatic weather stations," CIMO/OPAGSURFACE/ETST&MT-1/Doc. 6.1(2), pp. 10, 2004.
- M. A. Shafer, C. A. Fiebrich, D. S. Arndt, S. E. Fredrickson, and T. W. Hughes, "Quality assurance procedures in the Oklahoma Mesonetwork". J. Atmos. Oceanic Technol., Vol. 17, pp. 474-494, 2000. https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2
- KMA, "Real-time quality control system for meteorological observation data (I) Application," 11-1360000-000206-01 (Tech. Note 2006-2), pp. 157, 2006.
- Jung-Hoon. Chae, Moon-Soo Park, Young-Jean Choi, "The WISE Quality control system for integrated meteorological sensor data", Atmosphere, Vol. 24, No. 3, pp. 445-456, 2014. https://doi.org/10.14191/Atmos.2014.24.3.445
- Yu-Mi Cha, Joong-Bae Ahn, “Evaluation of artificial neural network correction skill on dynamically downscaled summer rainfall over South Korea,” Asia-Pac. J. Atmos. Sci., Vol. 41, No. 6, pp. 1125-1135, 2005.
- Joong-Bae Ahn, Yu-Mi Cha, “A comparison study of corrections using artificial neural network and multiple linear regression for dynamically downscaled winter temperature over South Korea,” Asia-Pac. J. Atmos. Sci., Vol. 41, No. 3, pp. 401-413, 2005.
- R. J. Kuligowski, A. P. Barros, “Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks,” Weather and Forecasting, Vol. 13, No. 4, pp. 1194-1204, 1998. https://doi.org/10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
- M. C. V. Ramirez, H. F. C. Velho, N. J. Ferreira, "Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region," Journal of Hydrology, Vol. 301, Nos. 1-4, pp. 146-162, 2005. https://doi.org/10.1016/j.jhydrol.2004.06.028
- Ju-Young Shin, Gian Choi, Chang-Sam Jeong, Jun-Haeng Heo, "Improving accuracy of RDAPS prediction precipitation using artificial neural networks," KWRA, In procceedings of KWRA 2008 conference, pp. 1013-1017. 2008.
- Boosik Kang, Bongki Lee, "Predicting probability of precipitation using artificial neural network and mesoscale numerical weather prediction," KSCE, Vol. 28, No. 5B, pp. 485-493. 2008.
- Ji-Hun Ha, Lee, Y.-H. Kim, “Forecasting the precipitation of the next day using deep learning,” JKIIS, Vol. 26, No. 2, pp. 93-98, 2016. https://doi.org/10.5391/JKIIS.2016.26.2.093
- S. Samarasinghe, "Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition," CRC Press, 2006.
- Y. Yuan, L. Rosasco, A. Caponnetto, "On Early Stopping in Gradient Descent Learning," Constr Approx Constructive Approximation, Vol. 26, No. 2. pp. 289-315, 2007. https://doi.org/10.1007/s00365-006-0663-2
- Seong-Eun Lee, Sun-Hee Shin, Kyung-Ja Ha, “The assessment of the spatial variation of the wind field using the meso-velocity scale and its contributing factors,” Atmosphere, Vol. 20, No. 3, pp. 343-353, 2010.
Cited by
- A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio–Temporal Model vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.499