DOI QR코드

DOI QR Code

미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data

  • 이상민 (한양대학교 자원환경공학과) ;
  • 변중무 (한양대학교 자원환경공학과)
  • Lee, Sangmin (Dept. of Earth Resources and Environmental Engineering, Hanyang Univ.) ;
  • Byun, Joongmoo (Dept. of Earth Resources and Environmental Engineering, Hanyang Univ.)
  • 투고 : 2016.07.05
  • 심사 : 2016.08.16
  • 발행 : 2016.08.31

초록

지열발전을 위해 심부에 인공적으로 균열대를 생성시키는 EGS (Enhanced/Engineered Geothermal System) 지열발전 기술에서는 유체의 이동통로가 되는 균열의 연결성 향상이 매우 중요하며, 다단계에 걸쳐 이루어지는 수압파쇄시 발생되는 균열의 정보는 미소진동 모니터링을 통해 확인이 가능하다. 하지만 각 단계별 수압파쇄시 발생되는 균열에 의해 변화된 속도구조를 고려하지 않고 미소진동 모니터링을 수행하게 되면, 다음 단계의 수압파쇄시 발생된 균열의 위치정보는 실제 위치와는 차이를 보이게 된다. 이 연구에서는 Kim et al. (2015)에 의해 개발된 미소진동 위치역산 알고리듬을 심부 수 km 하부를 대상으로 하는 EGS 지열발전에 적합하도록 개선시켰으며, 각 단계별 수압파쇄시 발생되는 균열에 의해 변화된 속도구조를 측정된 미소진동 자료를 이용하여 영상화할 수 있는 3차원 속도역산 알고리듬을 개발하였다. 아이코날 방정식(Eikonal equation)을 사용하여 단순 층서구조뿐만 아니라 복잡한 속도구조의 경우에도 적용가능하도록 하였고 그림자 영역(shadow zone)에 대해서도 어느 위치에서나 정확한 주시계산이 이루어지도록 하였으며, 프레넬 볼륨(Fresnel volume)을 이용한 자코비안(Jacobian) 계산을 통하여 속도역산의 계산시간을 효과적으로 단축시켰다. 또한, EGS 사이트를 모사한 속도모델에서 얻어진 미소진동 자료를 개발된 알고리듬에 적용시킨 결과, 전 단계에 이루어진 수압파쇄에 의해 변화된 속도를 반영하는 향상된 속도모델을 얻을 수 있었고 이를 이용하여 위치 재결정을 수행한 결과 실제 위치와 거의 일치하는 결과를 얻었다.

In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.

키워드

참고문헌

  1. Abdulaziz, A. M., 2014, Evaluation of Microseismicity Related to Hydraulic Fracking Operations of Petroleum Reservoirs and Its Possible Environmental Repercussions, Open Journal of Earthquake Research, 3, 43-54. https://doi.org/10.4236/ojer.2014.32006
  2. Bai, C., Li, X., Huang, G., and Greenhalgh, S., 2014, Simultaneous inversion for velocity and reflector geometry using multi-phase Fresnel volume rays, Pure Appl. Geophys., 171, 1089-1105. https://doi.org/10.1007/s00024-013-0686-6
  3. Brisco, C. and Van der Baan, M., 2016, A review of seismic velocity response to variations in pore pressure, poresaturating fluid and confining stress, Geoconvention 2016, Calgary, Canada, March 2016.
  4. Castellanos, F. and Van der Baan, M., 2013, Microseismic event locations using the double-difference algorithm, CSEG RECORDER, 38, 26-38.
  5. Cerveny, V. and Soares, J. E. P., 1992, Fresnel volume ray tracing, Geophysics, 57, 902-915. https://doi.org/10.1190/1.1443303
  6. Font, F., Kao, H., Lallemand, S., Liu, C. S., and Chiao, L. Y., 2004, Hypocentre determination offshore of eastern Taiwan using the maximum intersection method, Geophysics, 158, 655-675.
  7. Geiger, L., 1912, Probability method for the determination of earthquake epicenters from the arrival time only, Bulletin of St. Louis University, 8, 56-71.
  8. Jiang, H., Chen, Z., Zeng, X., Lv, H., and Liu, X., 2016, Velocity calibration for microseismic event location using surface data, Petroleum Science, 13, 225-236. https://doi.org/10.1007/s12182-016-0092-7
  9. Jordi, C., Schmelzbach, C., and Greenhalgh, S., 2015, On the value of frequency-dependent traveltime tomography for surface-seismic data, Geophysical Research Abstracts, 17, EGU2015-1606.
  10. Kim, D., Kim, M., Byun, J., and Seol, S. J., 2015, Locating microseismic events using a single vertical well data, Jigu-Mulli-wa-Mulli-Tamsa, 18, 63-73.
  11. Kim, H. J., Song, Y., and Lee, K. H., 1999, Inequality constraint in least squares inversion of geophysical data, Earth Planets Space, 51, 255-259. https://doi.org/10.1186/BF03352229
  12. Pavlis, G. L., 1986, Appraising earthquake hypocenter location error: a complete, practical approach for single-event locations, Bull. Seism. Soc. Am., 76, 1699-1717.
  13. Podvin, P. and Lecomte, I., 1991, Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophysical Journal International, 105, 271-284. https://doi.org/10.1111/j.1365-246X.1991.tb03461.x
  14. Rawlinson, N., Hauser, J., and Sambridge, M., 2008, Seismic ray tracing and wavefront tracking in laterally heterogeneous media, Advances in Geophysics, 49, 203. https://doi.org/10.1016/S0065-2687(07)49003-3
  15. Vlastos, S., Liu, E., Main, I. G., Schoenberg, M., Narteau, C., Li, X. Y., and Maillot, B., 2006, Dual simulations of fluid flow and seismic wave propagation in a fractured network: effects of pore pressure on seismic signature, Geophysical Journal International, 166, 825-838. https://doi.org/10.1111/j.1365-246X.2006.03060.x
  16. Watanabe, T., Toshifumi, M., and Yuzuru, A., 1999, Seismic traveltime tomography using Fresnel volume approach: 69th Annual Meeting, SEG Expanded Abstracts.