DOI QR코드

DOI QR Code

Effect of Skirt Length on Behavior of Suction Foundations for Offshore Wind Turbines Installed in Dense Sand Subjected to Earthquake Loadings

조밀한 모래지반에 설치된 해상풍력 석션기초의 스커트길이에 따른 지진하중시 거동특성

  • Choo, Yun Wook (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Olalo, Leonardo (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Bae, Kyung-Tae (Daewoo Institute of Construction Technology(DICT), DAEWOO E&C)
  • 추연욱 (국립공주대학교 건설환경공학부) ;
  • ;
  • 배경태 ((주)대우건설 기술연구원)
  • Received : 2015.10.26
  • Accepted : 2016.08.17
  • Published : 2016.08.31

Abstract

This study aims to analyze seismic responses of suction foundations for offshore wind turbine. For this purpose, dynamic centrifuge model tests were carried out. The skirt length of the suction foundation is a critical element for bearing mechanism against environmental loads. Thus, dynamic centrifuge model tests were performed and analyzed for three suction foundation models with the ratios of skirt length to suction foundation diameter of 0.5, 0.75, and 1 installed in dense sand. As results, the acceleration amplification at the suction foundation, residual settlement, and residual tilting angle were compared.

본 연구는 해상풍력지지구조물로 적용되는 석션기초의 지진하중에 대한 동적거동 분석을 목적으로 하였다. 이를 위하여 동적원심모형실험을 수행하였다. 석션기초의 스커트길이는 외력에 대한 지지거동에 중요한 역할을 한다. 스커트길이/석션기초외경 비가 0.5, 0.75, 1의 3가지 석션기초 모형이 조밀한 모래지반에 설치된 경우에 대하여 동적원심모형실험 결과를 제시하였다. 실험결과로 스커트길이에 따른 석션기초에서의 가속도증폭특성, 잔류침하량, 잔류회전각을 비교하였다.

Keywords

References

  1. Anderson, K.H., Murff, J.D., Randolph, M.F., Clukey, E.C., Erbich, C.T., Jostad, H.P., Hansen, B., Aubeny, C., Sharma, P. and Supachawarote, C. (2005). Suction anchors for deepwater applications. Proc. the 1st Int. Symp. Frontiers in Offshore Geotechnics, Perth, Australia, 3-30.
  2. Byrne, B.W. and Houlsby, G.T. (2003). Foundations for offshore wind turbines. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Phys. Sciences, 361, 2909-2930.
  3. Choo, Y.W., Kim, D.J., Kim, S., Kim, J.H., Kim, D.S., Jee, S.H. and Choi, J.H. (2012). Centrifuge tests of monopod and tripod bucket foundations for offshore wind turbine tower. Proc. 1st Asian Workshop, Asiafuge 2012, Mumbai, India.
  4. Choo, Y.W., Lee, K., Yang, S.G., Bae, J., Kim, Y., Jin, B.M. and Kim, N.R. (2014). Dynamic centrifuge model tests of bucket foundations for offshore wind tower. Proc. of EESK Conference, Daejeon, Korea (in Korean).
  5. Chopra, A.K. (2000). Dynamics of Structures: Theory and Applications to Earthquake Engineering. New Jersey: Prentice Hall.
  6. Doherty, P. and Gavin, K. (2012). Laterally loaded monopile design for offshore wind farms. Proc. of the Institution of Civil Engineers, Energy, 165(EN1), 7-17. https://doi.org/10.1680/ener.11.00003
  7. Fischer, T., de Vries, W. and Schmidt, B. (2010). Upwind design basis (WP4: Offshore Foundations and Support Structures). 4-10-PU-0204, Endowed Chair of Wind Energy (SWE) at the Institute of Aircraft Design Universitat Stuttgart.
  8. Houlsby, G.T. and Byrne, B.W. (2000). Suction caisson foundations for offshore wind turbines and anemometer masts. Wind Engineering, 24(4), 249-255. https://doi.org/10.1260/0309524001495611
  9. Houlsby, G.T., Ibsen, L.B. and Byrne, B.W. (2005). Suction caissons for wind turbines. Proc. the 1st Int. Symp. Frontiers in Offshore Geotechnics, Perth, Australia, 75-93.
  10. Hung, L.C. and Kim S.R. (2014). Evaluation of undrained bearing capacities of bucket foundations under combined loads, Marine Georesources and Geotechnology, 32, 76-92. https://doi.org/10.1080/1064119X.2012.735346
  11. Kim, D.J., Choo, Y.W., Kim, S., Kim, J.H., Choi, H. and Kim, D.S. (2014a). Investigation of monotonic and cyclic behavior of tripod suction bucket foundations for offshore wind towers using centrifuge modeling, J. Geotechnical and Geoenvironmental Engrg., ASCE, 140(5), 04014008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001083
  12. Kim, N.R., Park, D.S., Shin, D.H. and Jung, W.S. (2014b). An 800 g-tonne geotechnical centrifuge at K-water Institute, Korea. Proc. Intern. Conf., Perth, Australia.
  13. Kourkoulis, R.S., Lekkakis, P.C., Gelagoti, F.M. and Kaynia, A.M. (2014). Suction caisson foundations for offshore wind turbines subjected to wave and earthquake loading: effect of soil-foundation interface. Geotechnique, 64(3), 171-185. https://doi.org/10.1680/geot.12.P.179
  14. Kwag, D., Oh, M., Kwon, O. and Bang, S. (2013). Field installation tests of monopod suction pile and tripod suction buckets. Proc. the ASME 2013 32nd Int. Conf. on Ocean, Offshore and Arctic Engrg., OMAE2013, Nantes, France.
  15. LeBlanc, C., Houlsby, G.T. and Byrne, B.W. (2010). Response of stiff piles in sand to long term cyclic loading. Geotechnique, 60(2), 79-90. https://doi.org/10.1680/geot.7.00196
  16. Lee, S.H., Choo, Y.W. and Kim, D.S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dynamics and Earthquake Engineering, 44(1), 102-114. https://doi.org/10.1016/j.soildyn.2012.09.008
  17. Olalo, L.T., Choo, Y.W., Yang, S.G., Seo, J.H. and Bae, K.T. (2015). Seismic response of bucket foundations for offshore wind tower, J. Korean Soc. Hazard Mitig., 15(5), 179-189. https://doi.org/10.9798/KOSHAM.2015.15.5.179
  18. Randolph, M.F. and House, A.R. (2002). Analysis of suction caisson capacity in clay. Proc. the Offshore Technology Conference, Huston. Paper No. OTC 14236.
  19. Schofield, A.N. (1980). Cambridge geotechnical centrifuge operations. Geotechnique, 30(3): 227-268. https://doi.org/10.1680/geot.1980.30.3.227
  20. Segismundo, Q.E., Lee, B.S., Kim, N.R. and Choo, Y.W. (2014). Evaluation of shear modulus of sand using earthquake records in dynamic centrifuge tests, J. Korean Soc. Hazard Mitig., 14(3), 1-9. https://doi.org/10.9798/KOSHAM.2014.14.3.1
  21. Shin, Y., Langford, T., Cho, K., Park, J. and Park, J. (2014). Design of composite pile foundations for offshore wind turbines. Proc. the Twenty-fourth Int. Ocean and Polar Engrg. Conf., Busan, Korea.
  22. Sparrevik, P. (2002). Suction pile technology and installation in deep waters. Proc. the Offshore Technology Conference, Houston. Paper No. OTC 14241.
  23. Taylor, R.N. (1995). Centrifuges in modeling: principles and scale effect. Geotechnical Centrifuge Technology, 19-33.
  24. Tjelta, T.I. (2001). Suction piles: there position and application today, Proc. of 11th Int. Offshore and Polar Engrg. Conf., Stavanger, Norwary.
  25. Wang, X., Zeng X., Yu, H. and Wang, H. (2015). Centrifuge modeling of offshore wind turbine with bucket foundation under earthquake loading. IFCEE 2015, 1741-1750.
  26. Wang, Y., Lu, X., Wang, S. and Shi, Z. (2006). The response of bucket foundation under horizontal dynamic loading. Ocean Engineering, 33, 964-973. https://doi.org/10.1016/j.oceaneng.2005.07.005
  27. Zhang, P., Ding, H., Le, C. and Liu, X. (2011). Test on the dynamic response of the offshore wind trubine structure with the largescale bucket foundation, Procedia Environmental Sciences, 12, 856-863.
  28. Zeng, X. and Schofield, A.N., (1996). Design and performance of an equivalent-shear-beam container for earthquake centrifuge modeling. Geotechnique, 46, 83-102. https://doi.org/10.1680/geot.1996.46.1.83
  29. Zhu, B., Kong, D.Q., Chen, R.P., Kong L.G. and Chen, Y.M. (2011). Installation and lateral loading tests of suction caissons in silt. Canadian Geotechnical J., 48(7), 1070-1084. https://doi.org/10.1139/t11-021