DOI QR코드

DOI QR Code

A Review of Biofuels Production Technologies from Microalgae

미세조류 유래 바이오연료 생산 기술에 관한 고찰

  • PARK, JOYONG (Petroleum Technology R&D Center, Korea Petroleum Quality and Distribution Authority) ;
  • KIM, JAE-KON (Petroleum Technology R&D Center, Korea Petroleum Quality and Distribution Authority) ;
  • PARK, CHEUNKYU (Petroleum Technology R&D Center, Korea Petroleum Quality and Distribution Authority)
  • 박조용 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 박천규 (한국석유관리원 석유기술연구소)
  • Received : 2016.06.14
  • Accepted : 2016.08.30
  • Published : 2016.08.30

Abstract

Biofuels produced from biomass can be substituted for petroleum fuels due to GHG reduction, sustainability and environmental friendly. The process technologies that convert biomass into biofuels are varied and depend on the feedstocks. Microalgae are considered to be one of the most promising alternative source to the conventional feedstocks for biofuel. Microalgae can be converted to biodiesel, bioethanol, biogas and biojet fuel via thermolchemical and biochemical production technologies. This reviews discusses recent advance in understanding the effects of the characteristics of various processes on the production of biofuels using microalgae. The performances of microalgae based biofuel are compared.

Keywords

References

  1. F. Shi, P. Wang, Y. Duan, D. Linka and B. Morrealea, "Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations", RSC Advances, Vol. 2, 2012, p. 9727. https://doi.org/10.1039/c2ra21594b
  2. A. Demirbas, "Progress and recent trends in biodiesel fuels", Energy Conversion and Management, Vol. 50, 2009, p. 14. https://doi.org/10.1016/j.enconman.2008.09.001
  3. C.E. Silva and A. Bertucco, "Bioethanol from microalgae and cyanobacteria: A review andtechnological outlook", Process Biochemistry, 2016.
  4. M. Ras, L. Lardon, S. Bruno, N. Bernet and J.P. Steyer, "Experimental study on a coupled process of production and an aerobic digestion of Chlorella vulgaris", Bioresource Technology, Vol. 102, 2011, p. 200. https://doi.org/10.1016/j.biortech.2010.06.146
  5. H.Y. Wang, D. Bluck and B.J.V. Wie, "Conversion of microalgae to jet fuel: Process design and simulation", Bioresource Technology, Vol. 167, 2014, p. 349. https://doi.org/10.1016/j.biortech.2014.05.092
  6. A. Sahu, I. Pancha, D. Jain, C. Paliwal, T. Ghosh and S. Patidar, "Fatty acids as biomarkers of microalgae". Phytochemistry, Vol. 89, 2013, p. 53. https://doi.org/10.1016/j.phytochem.2013.02.001
  7. E.W. Becker, "Micro-algae as a source of protein", Biotechnol. Adv., Vol. 25, 2007, p. 207. https://doi.org/10.1016/j.biotechadv.2006.11.002
  8. A.F. Talebi, S.K. Mohtashami, M. Tabatabaei, M. Tohidfar, A. Bagheri and M. Zeinalabe, "Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production", Algal Res., Vol. 2, 2013, p. 258. https://doi.org/10.1016/j.algal.2013.04.003
  9. Y.H. Chen, B.Y. Huang, T.H. Chiang and T.C. Tang, "Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel", Fuel, Vol. 94, 2012, p. 270. https://doi.org/10.1016/j.fuel.2011.11.031
  10. R. Praveenkumar, K. Shameera, G. Mahalakshmi, M.A. Akbarsha and N. Thajuddin, "Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production", Biomass Bioenerg., Vol. 37, 2012, p. 60. https://doi.org/10.1016/j.biombioe.2011.12.035
  11. S. Jazzar, J. Quesada-Medina, P. Olivares-Carrillo, M.N. Marzouki, F.G. Acien-Fernandez, and J.M. Fernandez-Sevilla, "A whole biodiesel conversion process combining isolation, cultivation and insitu supercritical methanol transesterification of native microalgae", Bioresour. Technol., Vol. 190, 2015, p. 281. https://doi.org/10.1016/j.biortech.2015.04.097
  12. E.J. Lohman, R.D. Gardner, L. Halverson, R.E. Macur, B.M. Peyton and R. GerlachAn, "Efficient and scalable extraction and quantification method for algal derived biofuel", Journal of Microbiological Methods, Vol. 94, 2013, 235. https://doi.org/10.1016/j.mimet.2013.06.007
  13. J.-K. Kim, E.-S. Yim and C. Jung, "Study on comparison of global biofuels mandates policy in transport sector", New & Renewable Energy, Vol. 7, 2011, p. 18.
  14. FC.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su and W.T. Wu, "Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction", Bioresource Technology, Vol. 101, 2010, 875.
  15. M. Sostaric, D. Klinar, M. Bricelj, J. Golob, M. Berovic and B. Likozar, "Growth, lipid extraction and thermal degradation of the microalgae Chlorella vulgaris", New Biotechnology, Vol. 29, 2012, p. 325. https://doi.org/10.1016/j.nbt.2011.12.002
  16. R. Halim, M.K. Danquah and P.A. Webley, "Extraction of oil from microalgae for biodiesel production: A review", Biotechnology Advances, Vol. 30, 2012, p. 709. https://doi.org/10.1016/j.biotechadv.2012.01.001
  17. J.-K. kim, J.Y. Park, E.S. Yim, K.-I. Min, C.-K. Park and J.-H. Ha, "Bio-Jet fuel production technologies for GHG reduction in aviation sector", Trans. of the Korean Hydrogen and New Energy Society, Vol. 26, 2015, p. 1. https://doi.org/10.7316/KHNES.2015.26.1.001
  18. G. Adriana, R. Marius, T. Monica, P. Csaba and D.I. Florin, "Biodiesel production using enzymatic transesterification-current stateandperspectives", Renewable Energy, Vol. 39, 2012, p. 10. https://doi.org/10.1016/j.renene.2011.08.007
  19. M.P. Rai, and S. Gupta, "Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans", Energy Conversion and Management, 2016.
  20. E.J. Lohman, R.D. Gardner, L. Halverson, R.E. Macur, B.M. Peyton, and R. Gerlach, "An efficient and scalable extraction and quantification method for algal derived biofuel", Journal of Microbiological Methods, Vol. 94, 2013, p. 235. https://doi.org/10.1016/j.mimet.2013.06.007
  21. E.A. Ehinem, Z. Sun, and G.C. Carrington, "Use of ultrasound and co-solvents to improve the in situ transesterification of microalgae biomass", Procedia Environ. Sci., Vol. 15, 2012, p. 47. https://doi.org/10.1016/j.proenv.2012.05.009
  22. W. Wang and L. Tao, "Bio-jet fuel conversion technologies", Renewable and Sustainable Energy Reviews, Vol. 53, 2016, p. 801. https://doi.org/10.1016/j.rser.2015.09.016
  23. T. Suganya, M. Varman, H.H. Masjuki, and S. Renganathan, "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach", Renewable and Sustainable Energy Reviews, Vol. 55, 2016, p.909. https://doi.org/10.1016/j.rser.2015.11.026
  24. K.A. Jung, S.R. Lim, Y. Ki and J.M. Park. "Potentials of macroalgae as feedstocks for biorefinery". Bioresour. Technol., Vol. 135, 2013, p. 182. https://doi.org/10.1016/j.biortech.2012.10.025
  25. E.A.R. Tercero, G. Domenicali and A. Bertucco, "Autotrophic production of biodiesel from microalgae: An update process and economic analysis", Energy, Vol. 76, 2014, p. 807. https://doi.org/10.1016/j.energy.2014.08.077
  26. C. Asada, K. Doi, C. Sasaki, and Y. Nakamura, "Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation", Nat. Resour., Vol. 3, 2012, p. 175.
  27. S.P. Choi, M.T. Nguyen, and S.J. Sim, "Enzymatic pretreatment of Chlamydomonasreinhardtii biomass for ethanol production", Bioresource Technol., Vol. 101, 2010, p. 5330. https://doi.org/10.1016/j.biortech.2010.02.026
  28. O.K. Lee, Y. Oh, and E.Y. Lee, "Bioethanol production from carbohydrate-enrichedresidual biomass obtained after lipid extraction of Chlorella sp. KR-1", Bioresource Technol., Vol. 196, 2015, p. 22. https://doi.org/10.1016/j.biortech.2015.07.040
  29. O.K. Lee, A.L. Kim, D.H. Seong, C.G. Lee, Y.T. Jung, J.W. Lee, and E.Y. Lee, "Chemo-enzymatic saccharification and bioethanol fermentation of lipid- extracted residual biomass of the microalga, Dulaliella tetriolecta", Bioresource Technol., Vol. 132, 2013, p. 197. https://doi.org/10.1016/j.biortech.2013.01.007
  30. K.B. Mollers, D. Cannella, H. Jorgensen, and N. Frigaard, "Cyanobacterial biomass as carbohydrate and nutriente feedstock for bioethanol production by yeast fermentation", Biotechnology for Biofuels, Vol. 7, 2014, p. 1. https://doi.org/10.1186/1754-6834-7-1
  31. W. Zhong, Z. Zhang, Y. Luo, W. Qiao, M. Xiao, and M. Zhang, "Biogas productivity by co-digesting Taihubluealgae with cornstra was an external carbon source", Bioresour Technol., Vol. 114, 2012, p. 281. https://doi.org/10.1016/j.biortech.2012.02.111
  32. V. Vivekanand, V.G. Eijsink, and S.J. Horn, "Biogas production from the brown seaweed saccharinalatissima: thermal pretreatment and codigestion with wheat straw", J. Appl. Phycol., Vol. 24, 2012, p. 1295. https://doi.org/10.1007/s10811-011-9779-8
  33. N.P. Thi, W.J. Nam, Y.J. Jeon, and H.H. Yoon, "Volatile fatty acids production from marine macroalgae by anaerobic fermentation", Bioresour Technol., Vol. 124, 2012, p. 500. https://doi.org/10.1016/j.biortech.2012.08.081
  34. C. Golueke, W. Oswald and H. Gotaas, "An aerobic digestion of algae", Applied and Environmental Microbiology, Vol. 5, 1957, p. 47.
  35. C. Zamalloa, MN. Boon and W. Verstraete, "An aerobic digestibility of Scenedesmus obliquus and Phaeodacty lumtricornutum under mesophilic and thermophilic conditions", Applied Energy, Vol. 92, 2012, p. 733. https://doi.org/10.1016/j.apenergy.2011.08.017
  36. J.H. Mussgnug, V. Klassen, A. Schlüter and O. Kruse, "Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology, Vol. 150, 2010, p. 51.
  37. S. Cho, S. Park, J. Seon, J. Yu, and T. Lee, "Evaluation of thermal, ultrasonic and alkali pretreatments on mixed- microalgal biomass to enhance anaerobic methane production", Bioresour Technol., Vol. 143, 2013, p. 330. https://doi.org/10.1016/j.biortech.2013.06.017
  38. C. Gonzalez-Fernandez, B. Sialve, N. Bernet, and J.P. Steyer, "Comparison of ultra-sound and thermal pretreatment of Scenedesmus biomass on methane production", Bioresour Technol., Vol. 110, 2012, p. 610. https://doi.org/10.1016/j.biortech.2012.01.043
  39. P. Keymer, I. Ruffell, S. Pratt, and P. Lant, "High pressure thermal hydrolysis as pre-treatment to increase the methane yield during an aerobic digestion of microalgae", Bioresour Technol., Vol. 13, 2013, p. 128.
  40. S. Schwede, A. Kowalczyk, M. Gerber, and R. Span, "Influence of different cell disruption techniques on mono digestion of algal biomass", In: Proceedings of world renewable energy congress, 2011.
  41. M.A. Islam, G.A. Ayoko, R. Brown, D. Stuart and K. Heimann. "Influence of fatty acid structure on fuel properties of algae derived biodiesel", Procedia Eng., Vol. 56, 2013, p. 591. https://doi.org/10.1016/j.proeng.2013.03.164
  42. J.Y. Park, J.-K. Kim, K.-I. Min, C.-K. Park and J.-H. Ha, "Effect study of fuel specifications on biofuels policy in transport sector", J. of Korean Oil Chemists' Soc., Vol. 32, 2015, p. 363. https://doi.org/10.12925/jkocs.2015.32.3.363
  43. I.A. Nascimento, S.S.I. Marques, I.T.D. Cabanelas, S.A. Pereira, J.I. Druzian and C.O. de Souza, "Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria", Bioenerg. Res., Vol. 6, 2013, p. 1. https://doi.org/10.1007/s12155-012-9222-2
  44. H. Wu and X. Miao, "Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels", Bioresource Technology Vol. 170, 2014, p. 421. https://doi.org/10.1016/j.biortech.2014.08.017
  45. A.V. Piligaev, K.N. Sorokina, A.V. Bryanskaya, S.E. Peltek, N.A. Kolchanov and V.N. Parman, "Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production", Algal Res., Vol. 12, 2015, p. 368. https://doi.org/10.1016/j.algal.2015.08.026
  46. B. Singh, A. Guldhe, I. Rawat and F. Bux. "Towards a sustainable approach for development of biodiesel from plant and microalgae", Renewable Sustainable Energy Rev., Vol. 29, 2014, p. 216. https://doi.org/10.1016/j.rser.2013.08.067